How to define limit operations in general topological spaces? Are nets able to do this?is a net stronger than a transfinite sequence for characterizing topology?Permitted value of epsilon in Discrete Metric SpaceWhy are topological spaces interesting to study?Define $f(y)=d(x_0,y)$, prove that $f$ is continuous.Finite point set has limit points for general topological spaces?Is the uniform limit of continuous functions continuous for topological spaces?Can we define the concept of limit without a topology?Equivalent definition of limit of a function (Reference request)Can limits be defined in a more algebraic way, instead of using the completely analytic $delta$-$epsilon$ definition?Is Wikipedia correct about bounded sets?
My friend is being a hypocrite
What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?
How to define limit operations in general topological spaces? Are nets able to do this?
Wrapping homogeneous Python objects
Asserting that Atheism and Theism are both faith based positions
What are substitutions for coconut in curry?
A Ri-diddley-iley Riddle
Light propagating through a sound wave
Existence of a celestial body big enough for early civilization to be thought of as a second moon
Relation between independence and correlation of uniform random variables
Do native speakers use "ultima" and "proxima" frequently in spoken English?
gerund and noun applications
Optimising a list searching algorithm
Turning a hard to access nut?
Fewest number of steps to reach 200 using special calculator
Unfrosted light bulb
Generic TVP tradeoffs?
How does one measure the Fourier components of a signal?
I got the following comment from a reputed math journal. What does it mean?
In what cases must I use 了 and in what cases not?
How can an organ that provides biological immortality be unable to regenerate?
Variable completely messes up echoed string
Writing in a Christian voice
Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?
How to define limit operations in general topological spaces? Are nets able to do this?
is a net stronger than a transfinite sequence for characterizing topology?Permitted value of epsilon in Discrete Metric SpaceWhy are topological spaces interesting to study?Define $f(y)=d(x_0,y)$, prove that $f$ is continuous.Finite point set has limit points for general topological spaces?Is the uniform limit of continuous functions continuous for topological spaces?Can we define the concept of limit without a topology?Equivalent definition of limit of a function (Reference request)Can limits be defined in a more algebraic way, instead of using the completely analytic $delta$-$epsilon$ definition?Is Wikipedia correct about bounded sets?
$begingroup$
I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.
For $f:mathbbRto mathbbR$,
$
lim_xto x_0f(x)=a
$
means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.
Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?
real-analysis general-topology
$endgroup$
add a comment |
$begingroup$
I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.
For $f:mathbbRto mathbbR$,
$
lim_xto x_0f(x)=a
$
means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.
Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?
real-analysis general-topology
$endgroup$
add a comment |
$begingroup$
I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.
For $f:mathbbRto mathbbR$,
$
lim_xto x_0f(x)=a
$
means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.
Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?
real-analysis general-topology
$endgroup$
I was always under the impression that in order to take a limit, I need to have a metric defined on my underlying space.
For $f:mathbbRto mathbbR$,
$
lim_xto x_0f(x)=a
$
means that for all $epsilon >0 $ there exists a $delta(epsilon)>0$ such that $|f(x)-a|<epsilon$ whenever $0< |x-x_0|<delta$. The notion of a limit uses the underlying metric $|cdot|$ of $mathbbR$.
Is there a consistent way of dispensing with the metric and still define a limit operation in some topological space? Are nets able to do this?
real-analysis general-topology
real-analysis general-topology
edited 11 hours ago
YuiTo Cheng
2,0532637
2,0532637
asked 14 hours ago
EEEBEEEB
52738
52738
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.
Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.
$endgroup$
add a comment |
$begingroup$
The notion of limit is well-defined for any topological space, even non-metric ones.
Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.
But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.
$endgroup$
3
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
add a comment |
$begingroup$
A net is a function from an directed set $(I, le)$ (say) to a space $X$.
$f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.
The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.
I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.
If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151413%2fhow-to-define-limit-operations-in-general-topological-spaces-are-nets-able-to-d%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.
Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.
$endgroup$
add a comment |
$begingroup$
The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.
Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.
$endgroup$
add a comment |
$begingroup$
The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.
Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.
$endgroup$
The general definition of continuity is as follows: let $X$ and $Y$ be topological spaces and $f:X to Y$ be a map. $F$ is continuous if the inverse image of any open set is open. $f$ is continuous at a point $x$ iff for every open set $V$ containing $f(x)$ there exists an open set $U$ containing $x$ such that $f(U) subset V$.
Continuity of $f$ is equivalent to the following: whenever a net $(x_i)_i in I$ converges to some point $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$. Similarly, $f$ is continuous at a point $x$ iff whenever a net $(x_i)_i in I$ converges to $x$ we have $x$ we have $(f(x_i))_i in I$ converges to $f(x)$.
answered 12 hours ago
Kavi Rama MurthyKavi Rama Murthy
67.8k53067
67.8k53067
add a comment |
add a comment |
$begingroup$
The notion of limit is well-defined for any topological space, even non-metric ones.
Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.
But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.
$endgroup$
3
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
add a comment |
$begingroup$
The notion of limit is well-defined for any topological space, even non-metric ones.
Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.
But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.
$endgroup$
3
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
add a comment |
$begingroup$
The notion of limit is well-defined for any topological space, even non-metric ones.
Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.
But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.
$endgroup$
The notion of limit is well-defined for any topological space, even non-metric ones.
Here is the correct definition: let $f : X rightarrow Y$ be a function between two topological spaces. We say that the limit of $f$ at a point $x in X$ is the point $y in Y$ if for all neighborhoods $N$ of $y$ in $Y$, there exists a neighborhood $M$ of $x$ in $X$ such that $f(M) subset N$.
But note that the sequential characterization of limit ($f$ tends to $y$ in $x$ iff for every sequence $(x_n) rightarrow x$, one has $f(x_n) rightarrow y$) is not true in a general topological space. It is true if $X$ is metrizable.
edited 11 hours ago
psmears
71149
71149
answered 12 hours ago
TheSilverDoeTheSilverDoe
4,037114
4,037114
3
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
add a comment |
3
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
3
3
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
Perhaps it's worth mentioning that the limit might fail to be unique, in non-Hausdorff spaces.
$endgroup$
– chi
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
$begingroup$
@chi Yes, thank you for this comment ! Indeed the precision can be usefull.
$endgroup$
– TheSilverDoe
6 hours ago
add a comment |
$begingroup$
A net is a function from an directed set $(I, le)$ (say) to a space $X$.
$f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.
The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.
I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.
If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.
$endgroup$
add a comment |
$begingroup$
A net is a function from an directed set $(I, le)$ (say) to a space $X$.
$f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.
The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.
I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.
If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.
$endgroup$
add a comment |
$begingroup$
A net is a function from an directed set $(I, le)$ (say) to a space $X$.
$f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.
The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.
I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.
If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.
$endgroup$
A net is a function from an directed set $(I, le)$ (say) to a space $X$.
$f: I to X$ converges to $x$ iff for every open set $O$ that contains $x$ there exists some $i_0 in I$ (depending on $O$, in general) such that for all $i in I, i ge i_0$ we know that $f(i) in O$.
The point $f(i)$ is often denoted by subscript: $x_i$. This subscript an be any member of the directed set $I$. A sequence is the special case where $I=mathbbN, le)$ (in its standard order). The definition is non-metric in that we use open sets containing $x$ (not open balls) but for metric spaces it suffices to check this for open balls $B(x,varepsilon), varepsilon>0$ as these form a local base at $x$.
I think that $lim_x to a f(x)$ can be defined by considering all nets $n$ on $Xsetminus a$ that converge to $a$, and if all those nets have the property that $f circ n$ is a net in $Y$ converging to the same $b in Y$, then this $b$ is called the limit of $f$ as $x$ tends to $a$.
If $X$ has a topology induced from a metric, e.g. then we can restrict ourselves to sequences instead of general nets in the above characterisation.
edited 9 hours ago
answered 12 hours ago
Henno BrandsmaHenno Brandsma
113k348121
113k348121
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151413%2fhow-to-define-limit-operations-in-general-topological-spaces-are-nets-able-to-d%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown