Recursively updating the MLE as new observations stream inSimple MLE Question4 cases of Maximum Likelihood Estimation of Gaussian distribution parameterssimulating random samples with a given MLEFor the family of distributions, $f_theta(x) = theta x^theta-1$, what is the sufficient statistic corresponding to the monotone likelihood ratio?Prove that MLE does not depend on the dominating measureDetermining an MLEMLE of $f(xmidtheta) = theta x^theta−1e^−x^thetaI_(0,infty)(x)$Sufficient statistic when $Xsim U(theta,2 theta)$Estimating the MLE where the parameter is also the constraintTrouble with MLE

Which partition to make active?

Could any one tell what PN is this Chip? Thanks~

Turning a hard to access nut?

Nested Dynamic SOQL Query

Do I need to convey a moral for each of my blog post?

Friend wants my recommendation but I don't want to give it to him

Air travel with refrigerated insulin

Why is this tree refusing to shed its dead leaves?

How to determine the greatest d orbital splitting?

Exit shell with shortcut (not typing exit) that closes session properly

Help with identifying unique aircraft over NE Pennsylvania

I got the following comment from a reputed math journal. What does it mean?

Why is "la Gestapo" feminine?

Can other pieces capture a threatening piece and prevent a checkmate?

What is the tangent at a sharp point on a curve?

Exposing a company lying about themselves in a tightly knit industry: Is my career at risk on the long run?

"Marked down as someone wanting to sell shares." What does that mean?

Does the Shadow Magic sorcerer's Eyes of the Dark feature work on all Darkness spells or just his/her own?

Single word to change groups

Do I need an EFI partition for each 18.04 ubuntu I have on my HD?

Why doesn't the fusion process of the sun speed up?

Would mining huge amounts of resources on the Moon change its orbit?

Why is participating in the European Parliamentary elections used as a threat?

Determine voltage drop over 10G resistors with cheap multimeter



Recursively updating the MLE as new observations stream in


Simple MLE Question4 cases of Maximum Likelihood Estimation of Gaussian distribution parameterssimulating random samples with a given MLEFor the family of distributions, $f_theta(x) = theta x^theta-1$, what is the sufficient statistic corresponding to the monotone likelihood ratio?Prove that MLE does not depend on the dominating measureDetermining an MLEMLE of $f(xmidtheta) = theta x^theta−1e^−x^thetaI_(0,infty)(x)$Sufficient statistic when $Xsim U(theta,2 theta)$Estimating the MLE where the parameter is also the constraintTrouble with MLE













8












$begingroup$


General Question



Say we have iid data $x_1$, $x_2$, ... $sim f(x,|,boldsymboltheta)$ streaming in. We want to recursively compute the maximum likelihood estimate of $boldsymboltheta$. That is, having computed
$$hatboldsymboltheta_n-1=undersetboldsymbolthetainmathbbR^pargmaxprod_i=1^n-1f(x_i,|,boldsymboltheta),$$
we observe a new $x_n$, and wish to somehow incrementally update our estimate
$$hatboldsymboltheta_n-1,,x_n to hatboldsymboltheta_n$$
without having to start from scratch. Are there generic algorithms for this?



Toy Example



If $x_1$, $x_2$, ... $sim N(x,|,mu, 1)$, then
$$hatmu_n-1 = frac1n-1sumlimits_i=1^n-1x_iquadtextandquadhatmu_n = frac1nsumlimits_i=1^nx_i,$$
so
$$hatmu_n=frac1nleft[(n-1)hatmu_n-1 + x_nright].$$










share|cite|improve this question











$endgroup$











  • $begingroup$
    Awesome question!
    $endgroup$
    – dlnB
    7 hours ago






  • 2




    $begingroup$
    Don't forget the inverse of this problem: updating the estimator as old observations are deleted.
    $endgroup$
    – Hong Ooi
    5 hours ago















8












$begingroup$


General Question



Say we have iid data $x_1$, $x_2$, ... $sim f(x,|,boldsymboltheta)$ streaming in. We want to recursively compute the maximum likelihood estimate of $boldsymboltheta$. That is, having computed
$$hatboldsymboltheta_n-1=undersetboldsymbolthetainmathbbR^pargmaxprod_i=1^n-1f(x_i,|,boldsymboltheta),$$
we observe a new $x_n$, and wish to somehow incrementally update our estimate
$$hatboldsymboltheta_n-1,,x_n to hatboldsymboltheta_n$$
without having to start from scratch. Are there generic algorithms for this?



Toy Example



If $x_1$, $x_2$, ... $sim N(x,|,mu, 1)$, then
$$hatmu_n-1 = frac1n-1sumlimits_i=1^n-1x_iquadtextandquadhatmu_n = frac1nsumlimits_i=1^nx_i,$$
so
$$hatmu_n=frac1nleft[(n-1)hatmu_n-1 + x_nright].$$










share|cite|improve this question











$endgroup$











  • $begingroup$
    Awesome question!
    $endgroup$
    – dlnB
    7 hours ago






  • 2




    $begingroup$
    Don't forget the inverse of this problem: updating the estimator as old observations are deleted.
    $endgroup$
    – Hong Ooi
    5 hours ago













8












8








8


2



$begingroup$


General Question



Say we have iid data $x_1$, $x_2$, ... $sim f(x,|,boldsymboltheta)$ streaming in. We want to recursively compute the maximum likelihood estimate of $boldsymboltheta$. That is, having computed
$$hatboldsymboltheta_n-1=undersetboldsymbolthetainmathbbR^pargmaxprod_i=1^n-1f(x_i,|,boldsymboltheta),$$
we observe a new $x_n$, and wish to somehow incrementally update our estimate
$$hatboldsymboltheta_n-1,,x_n to hatboldsymboltheta_n$$
without having to start from scratch. Are there generic algorithms for this?



Toy Example



If $x_1$, $x_2$, ... $sim N(x,|,mu, 1)$, then
$$hatmu_n-1 = frac1n-1sumlimits_i=1^n-1x_iquadtextandquadhatmu_n = frac1nsumlimits_i=1^nx_i,$$
so
$$hatmu_n=frac1nleft[(n-1)hatmu_n-1 + x_nright].$$










share|cite|improve this question











$endgroup$




General Question



Say we have iid data $x_1$, $x_2$, ... $sim f(x,|,boldsymboltheta)$ streaming in. We want to recursively compute the maximum likelihood estimate of $boldsymboltheta$. That is, having computed
$$hatboldsymboltheta_n-1=undersetboldsymbolthetainmathbbR^pargmaxprod_i=1^n-1f(x_i,|,boldsymboltheta),$$
we observe a new $x_n$, and wish to somehow incrementally update our estimate
$$hatboldsymboltheta_n-1,,x_n to hatboldsymboltheta_n$$
without having to start from scratch. Are there generic algorithms for this?



Toy Example



If $x_1$, $x_2$, ... $sim N(x,|,mu, 1)$, then
$$hatmu_n-1 = frac1n-1sumlimits_i=1^n-1x_iquadtextandquadhatmu_n = frac1nsumlimits_i=1^nx_i,$$
so
$$hatmu_n=frac1nleft[(n-1)hatmu_n-1 + x_nright].$$







maximum-likelihood online






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 6 hours ago







bamts

















asked 7 hours ago









bamtsbamts

780313




780313











  • $begingroup$
    Awesome question!
    $endgroup$
    – dlnB
    7 hours ago






  • 2




    $begingroup$
    Don't forget the inverse of this problem: updating the estimator as old observations are deleted.
    $endgroup$
    – Hong Ooi
    5 hours ago
















  • $begingroup$
    Awesome question!
    $endgroup$
    – dlnB
    7 hours ago






  • 2




    $begingroup$
    Don't forget the inverse of this problem: updating the estimator as old observations are deleted.
    $endgroup$
    – Hong Ooi
    5 hours ago















$begingroup$
Awesome question!
$endgroup$
– dlnB
7 hours ago




$begingroup$
Awesome question!
$endgroup$
– dlnB
7 hours ago




2




2




$begingroup$
Don't forget the inverse of this problem: updating the estimator as old observations are deleted.
$endgroup$
– Hong Ooi
5 hours ago




$begingroup$
Don't forget the inverse of this problem: updating the estimator as old observations are deleted.
$endgroup$
– Hong Ooi
5 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

See the concept of sufficiency and in particular, minimal sufficient statistics. In many cases you need the whole sample to compute the estimate at a given sample size, with no trivial way to update from a sample one size smaller (i.e. there's no convenient general result).



If the distribution is exponential family (and in some other cases besides; the uniform is a neat example) there's a nice sufficient statistic that can in many cases be updated in the manner you seek (i.e. with a number of commonly used distributions there would be a fast update).



One example I'm not aware of any direct way to either calculate or update is the estimate for the location of the Cauchy distribution (e.g. with unit scale, to make the problem a simple one-parameter problem). There may be a faster update, however, that I simply haven't noticed - I can't say I've really done more than glance at it for considering the updating case.



On the other hand, with MLEs that are obtained via numerical optimization methods, the previous estimate would in many cases be a great starting point, since typically the previous estimate would be very close to the updated estimate; in that sense at least, rapid updating should often be possible. Even this isn't the general case, though -- with multimodal likelihood functions (again, see the Cauchy for an example), a new observation might lead to the highest mode being some distance from the previous one (even if the locations of each of the biggest few modes didn't shift much, which one is highest could well change).






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
    $endgroup$
    – bamts
    3 hours ago











  • $begingroup$
    You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
    $endgroup$
    – Glen_b
    2 hours ago











  • $begingroup$
    ctd... In the right situation, mode switching may occur fairly often.
    $endgroup$
    – Glen_b
    1 hour ago


















3












$begingroup$

In machine learning, this is referred to as online learning.



As @Glen_b pointed out, there are special cases in which the MLE can be updated without needing to access all the previous data. As he also points out, I don't believe there's a generic solution for finding the MLE.



A fairly generic approach for finding the approximate solution is to use something like stochastic gradient descent. In this case, as each observation comes in, we compute the gradient with respect to this individual observation and move the parameter values a very small amount in this direction. Under certain conditions, we can show that this will converge to a neighborhood of the MLE with high probability; the neighborhood is tighter and tighter as we reduce the step size, but more data is required for convergence. However, these stochastic methods in general require much more fiddling to obtain good performance than, say, closed form updates.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398220%2frecursively-updating-the-mle-as-new-observations-stream-in%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    See the concept of sufficiency and in particular, minimal sufficient statistics. In many cases you need the whole sample to compute the estimate at a given sample size, with no trivial way to update from a sample one size smaller (i.e. there's no convenient general result).



    If the distribution is exponential family (and in some other cases besides; the uniform is a neat example) there's a nice sufficient statistic that can in many cases be updated in the manner you seek (i.e. with a number of commonly used distributions there would be a fast update).



    One example I'm not aware of any direct way to either calculate or update is the estimate for the location of the Cauchy distribution (e.g. with unit scale, to make the problem a simple one-parameter problem). There may be a faster update, however, that I simply haven't noticed - I can't say I've really done more than glance at it for considering the updating case.



    On the other hand, with MLEs that are obtained via numerical optimization methods, the previous estimate would in many cases be a great starting point, since typically the previous estimate would be very close to the updated estimate; in that sense at least, rapid updating should often be possible. Even this isn't the general case, though -- with multimodal likelihood functions (again, see the Cauchy for an example), a new observation might lead to the highest mode being some distance from the previous one (even if the locations of each of the biggest few modes didn't shift much, which one is highest could well change).






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
      $endgroup$
      – bamts
      3 hours ago











    • $begingroup$
      You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
      $endgroup$
      – Glen_b
      2 hours ago











    • $begingroup$
      ctd... In the right situation, mode switching may occur fairly often.
      $endgroup$
      – Glen_b
      1 hour ago















    8












    $begingroup$

    See the concept of sufficiency and in particular, minimal sufficient statistics. In many cases you need the whole sample to compute the estimate at a given sample size, with no trivial way to update from a sample one size smaller (i.e. there's no convenient general result).



    If the distribution is exponential family (and in some other cases besides; the uniform is a neat example) there's a nice sufficient statistic that can in many cases be updated in the manner you seek (i.e. with a number of commonly used distributions there would be a fast update).



    One example I'm not aware of any direct way to either calculate or update is the estimate for the location of the Cauchy distribution (e.g. with unit scale, to make the problem a simple one-parameter problem). There may be a faster update, however, that I simply haven't noticed - I can't say I've really done more than glance at it for considering the updating case.



    On the other hand, with MLEs that are obtained via numerical optimization methods, the previous estimate would in many cases be a great starting point, since typically the previous estimate would be very close to the updated estimate; in that sense at least, rapid updating should often be possible. Even this isn't the general case, though -- with multimodal likelihood functions (again, see the Cauchy for an example), a new observation might lead to the highest mode being some distance from the previous one (even if the locations of each of the biggest few modes didn't shift much, which one is highest could well change).






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
      $endgroup$
      – bamts
      3 hours ago











    • $begingroup$
      You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
      $endgroup$
      – Glen_b
      2 hours ago











    • $begingroup$
      ctd... In the right situation, mode switching may occur fairly often.
      $endgroup$
      – Glen_b
      1 hour ago













    8












    8








    8





    $begingroup$

    See the concept of sufficiency and in particular, minimal sufficient statistics. In many cases you need the whole sample to compute the estimate at a given sample size, with no trivial way to update from a sample one size smaller (i.e. there's no convenient general result).



    If the distribution is exponential family (and in some other cases besides; the uniform is a neat example) there's a nice sufficient statistic that can in many cases be updated in the manner you seek (i.e. with a number of commonly used distributions there would be a fast update).



    One example I'm not aware of any direct way to either calculate or update is the estimate for the location of the Cauchy distribution (e.g. with unit scale, to make the problem a simple one-parameter problem). There may be a faster update, however, that I simply haven't noticed - I can't say I've really done more than glance at it for considering the updating case.



    On the other hand, with MLEs that are obtained via numerical optimization methods, the previous estimate would in many cases be a great starting point, since typically the previous estimate would be very close to the updated estimate; in that sense at least, rapid updating should often be possible. Even this isn't the general case, though -- with multimodal likelihood functions (again, see the Cauchy for an example), a new observation might lead to the highest mode being some distance from the previous one (even if the locations of each of the biggest few modes didn't shift much, which one is highest could well change).






    share|cite|improve this answer











    $endgroup$



    See the concept of sufficiency and in particular, minimal sufficient statistics. In many cases you need the whole sample to compute the estimate at a given sample size, with no trivial way to update from a sample one size smaller (i.e. there's no convenient general result).



    If the distribution is exponential family (and in some other cases besides; the uniform is a neat example) there's a nice sufficient statistic that can in many cases be updated in the manner you seek (i.e. with a number of commonly used distributions there would be a fast update).



    One example I'm not aware of any direct way to either calculate or update is the estimate for the location of the Cauchy distribution (e.g. with unit scale, to make the problem a simple one-parameter problem). There may be a faster update, however, that I simply haven't noticed - I can't say I've really done more than glance at it for considering the updating case.



    On the other hand, with MLEs that are obtained via numerical optimization methods, the previous estimate would in many cases be a great starting point, since typically the previous estimate would be very close to the updated estimate; in that sense at least, rapid updating should often be possible. Even this isn't the general case, though -- with multimodal likelihood functions (again, see the Cauchy for an example), a new observation might lead to the highest mode being some distance from the previous one (even if the locations of each of the biggest few modes didn't shift much, which one is highest could well change).







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 6 hours ago

























    answered 6 hours ago









    Glen_bGlen_b

    214k23414764




    214k23414764







    • 1




      $begingroup$
      Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
      $endgroup$
      – bamts
      3 hours ago











    • $begingroup$
      You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
      $endgroup$
      – Glen_b
      2 hours ago











    • $begingroup$
      ctd... In the right situation, mode switching may occur fairly often.
      $endgroup$
      – Glen_b
      1 hour ago












    • 1




      $begingroup$
      Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
      $endgroup$
      – bamts
      3 hours ago











    • $begingroup$
      You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
      $endgroup$
      – Glen_b
      2 hours ago











    • $begingroup$
      ctd... In the right situation, mode switching may occur fairly often.
      $endgroup$
      – Glen_b
      1 hour ago







    1




    1




    $begingroup$
    Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
    $endgroup$
    – bamts
    3 hours ago





    $begingroup$
    Thanks! The point about the MLE possibly switching modes midstream is particularly helpful for understanding why this would be hard in general.
    $endgroup$
    – bamts
    3 hours ago













    $begingroup$
    You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
    $endgroup$
    – Glen_b
    2 hours ago





    $begingroup$
    You can see this for yourself with the above unit-scale Cauchy model and the data (0.1,0.11,0.12,2.91,2.921,2.933). The log-likelihood for the location has peaks near 0.5 and 2.5, and the (slightly) higher peak is the one near 0.5. Now make the next observation 10 and the mode of each of the two peaks barely moves but the second peak is now substantially higher. Gradient descent won't help you when that happens, it's almost like starting again. If your population is a mixture of two similar-size subgroups with different locations, such circumstances could occur - even in large samples. ... ctd
    $endgroup$
    – Glen_b
    2 hours ago













    $begingroup$
    ctd... In the right situation, mode switching may occur fairly often.
    $endgroup$
    – Glen_b
    1 hour ago




    $begingroup$
    ctd... In the right situation, mode switching may occur fairly often.
    $endgroup$
    – Glen_b
    1 hour ago













    3












    $begingroup$

    In machine learning, this is referred to as online learning.



    As @Glen_b pointed out, there are special cases in which the MLE can be updated without needing to access all the previous data. As he also points out, I don't believe there's a generic solution for finding the MLE.



    A fairly generic approach for finding the approximate solution is to use something like stochastic gradient descent. In this case, as each observation comes in, we compute the gradient with respect to this individual observation and move the parameter values a very small amount in this direction. Under certain conditions, we can show that this will converge to a neighborhood of the MLE with high probability; the neighborhood is tighter and tighter as we reduce the step size, but more data is required for convergence. However, these stochastic methods in general require much more fiddling to obtain good performance than, say, closed form updates.






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      In machine learning, this is referred to as online learning.



      As @Glen_b pointed out, there are special cases in which the MLE can be updated without needing to access all the previous data. As he also points out, I don't believe there's a generic solution for finding the MLE.



      A fairly generic approach for finding the approximate solution is to use something like stochastic gradient descent. In this case, as each observation comes in, we compute the gradient with respect to this individual observation and move the parameter values a very small amount in this direction. Under certain conditions, we can show that this will converge to a neighborhood of the MLE with high probability; the neighborhood is tighter and tighter as we reduce the step size, but more data is required for convergence. However, these stochastic methods in general require much more fiddling to obtain good performance than, say, closed form updates.






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        In machine learning, this is referred to as online learning.



        As @Glen_b pointed out, there are special cases in which the MLE can be updated without needing to access all the previous data. As he also points out, I don't believe there's a generic solution for finding the MLE.



        A fairly generic approach for finding the approximate solution is to use something like stochastic gradient descent. In this case, as each observation comes in, we compute the gradient with respect to this individual observation and move the parameter values a very small amount in this direction. Under certain conditions, we can show that this will converge to a neighborhood of the MLE with high probability; the neighborhood is tighter and tighter as we reduce the step size, but more data is required for convergence. However, these stochastic methods in general require much more fiddling to obtain good performance than, say, closed form updates.






        share|cite|improve this answer









        $endgroup$



        In machine learning, this is referred to as online learning.



        As @Glen_b pointed out, there are special cases in which the MLE can be updated without needing to access all the previous data. As he also points out, I don't believe there's a generic solution for finding the MLE.



        A fairly generic approach for finding the approximate solution is to use something like stochastic gradient descent. In this case, as each observation comes in, we compute the gradient with respect to this individual observation and move the parameter values a very small amount in this direction. Under certain conditions, we can show that this will converge to a neighborhood of the MLE with high probability; the neighborhood is tighter and tighter as we reduce the step size, but more data is required for convergence. However, these stochastic methods in general require much more fiddling to obtain good performance than, say, closed form updates.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        Cliff ABCliff AB

        13.6k12567




        13.6k12567



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398220%2frecursively-updating-the-mle-as-new-observations-stream-in%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

            Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

            A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos