Imaginary part of expression too difficult to calculateFinding real and imaginary partsMathematica taking too long to calculate recursive functionComplex Plot with Imaginary Part encoded in colorGetting the real part of a expressionAbout Complex Numbers, Real part and Imaginary part (symbolic calculus)Bug in HypergeometricPFQRegularized?Equivalence of ComplexExpand and assuming real argumentsSummation of complex and complex conjugate - elimination of imaginary partHow to get the real part of a complex expressionRoots of an expression

How to balance a monster modification (zombie)?

Hackerrank All Women's Codesprint 2019: Name the Product

Could any one tell what PN is this Chip? Thanks~

Why is there so much iron?

What is it called when someone votes for an option that's not their first choice?

"Marked down as someone wanting to sell shares." What does that mean?

Why does Surtur say that Thor is Asgard's doom?

Output visual diagram of picture

What (if any) is the reason to buy in small local stores?

Determine voltage drop over 10G resistors with cheap multimeter

is this saw blade faulty?

Single word to change groups

How to find the largest number(s) in a list of elements, possibly non-unique?

Hot air balloons as primitive bombers

Help with identifying unique aircraft over NE Pennsylvania

Why is indicated airspeed rather than ground speed used during the takeoff roll?

How are passwords stolen from companies if they only store hashes?

Why I don't get the wanted width of tcbox?

Why is "la Gestapo" feminine?

PTIJ: Why do we make a Lulav holder?

When should a starting writer get his own webpage?

How to understand 「僕は誰より彼女が好きなんだ。」

What is the tangent at a sharp point on a curve?

Was World War I a war of liberals against authoritarians?



Imaginary part of expression too difficult to calculate


Finding real and imaginary partsMathematica taking too long to calculate recursive functionComplex Plot with Imaginary Part encoded in colorGetting the real part of a expressionAbout Complex Numbers, Real part and Imaginary part (symbolic calculus)Bug in HypergeometricPFQRegularized?Equivalence of ComplexExpand and assuming real argumentsSummation of complex and complex conjugate - elimination of imaginary partHow to get the real part of a complex expressionRoots of an expression













3












$begingroup$


I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:



imFUN2 = ComplexExpand[Im[expression]];


Is there something I can do that can help speed things up?



Here is my full code:



expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3 
(3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
(4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
γa -> 1, dephasing -> 10^-4;

imFUN2 = ComplexExpand[Im[expression]];









share|improve this question











$endgroup$
















    3












    $begingroup$


    I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:



    imFUN2 = ComplexExpand[Im[expression]];


    Is there something I can do that can help speed things up?



    Here is my full code:



    expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3 
    (3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
    4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
    4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
    8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
    2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
    6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
    (4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
    4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
    2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
    4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
    ((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
    2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
    16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
    32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
    8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
    8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
    10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
    3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
    Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
    4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
    4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
    γa -> 1, dephasing -> 10^-4;

    imFUN2 = ComplexExpand[Im[expression]];









    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:



      imFUN2 = ComplexExpand[Im[expression]];


      Is there something I can do that can help speed things up?



      Here is my full code:



      expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3 
      (3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
      4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
      4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
      8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
      2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
      6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
      (4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
      4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
      2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
      4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
      ((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
      2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
      16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
      32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
      8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
      8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
      10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
      3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
      Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
      4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
      4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
      γa -> 1, dephasing -> 10^-4;

      imFUN2 = ComplexExpand[Im[expression]];









      share|improve this question











      $endgroup$




      I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:



      imFUN2 = ComplexExpand[Im[expression]];


      Is there something I can do that can help speed things up?



      Here is my full code:



      expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3 
      (3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
      4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
      4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
      8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
      2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
      6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
      (4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
      4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
      2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
      4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
      ((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
      2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
      16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
      32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
      8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
      8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
      10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
      3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
      Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
      4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
      4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
      γa -> 1, dephasing -> 10^-4;

      imFUN2 = ComplexExpand[Im[expression]];






      performance-tuning simplifying-expressions complex






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 8 hours ago









      MarcoB

      37.5k556113




      37.5k556113










      asked 9 hours ago









      Steven SagonaSteven Sagona

      1917




      1917




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          Not an elegant solution but it works



          num = Numerator[expression];
          den = Denominator[expression];
          reNum, imNum = ComplexExpand[ReIm[num]];
          reDen, imDen = ComplexExpand[ReIm[den]];
          (imNum reDen - reNum imDen)/(reDen^2 + imDen^2)


          I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand






          share|improve this answer









          $endgroup$












          • $begingroup$
            This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
            $endgroup$
            – Steven Sagona
            8 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "387"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193509%2fimaginary-part-of-expression-too-difficult-to-calculate%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          Not an elegant solution but it works



          num = Numerator[expression];
          den = Denominator[expression];
          reNum, imNum = ComplexExpand[ReIm[num]];
          reDen, imDen = ComplexExpand[ReIm[den]];
          (imNum reDen - reNum imDen)/(reDen^2 + imDen^2)


          I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand






          share|improve this answer









          $endgroup$












          • $begingroup$
            This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
            $endgroup$
            – Steven Sagona
            8 hours ago















          6












          $begingroup$

          Not an elegant solution but it works



          num = Numerator[expression];
          den = Denominator[expression];
          reNum, imNum = ComplexExpand[ReIm[num]];
          reDen, imDen = ComplexExpand[ReIm[den]];
          (imNum reDen - reNum imDen)/(reDen^2 + imDen^2)


          I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand






          share|improve this answer









          $endgroup$












          • $begingroup$
            This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
            $endgroup$
            – Steven Sagona
            8 hours ago













          6












          6








          6





          $begingroup$

          Not an elegant solution but it works



          num = Numerator[expression];
          den = Denominator[expression];
          reNum, imNum = ComplexExpand[ReIm[num]];
          reDen, imDen = ComplexExpand[ReIm[den]];
          (imNum reDen - reNum imDen)/(reDen^2 + imDen^2)


          I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand






          share|improve this answer









          $endgroup$



          Not an elegant solution but it works



          num = Numerator[expression];
          den = Denominator[expression];
          reNum, imNum = ComplexExpand[ReIm[num]];
          reDen, imDen = ComplexExpand[ReIm[den]];
          (imNum reDen - reNum imDen)/(reDen^2 + imDen^2)


          I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 8 hours ago









          HughHugh

          6,59421945




          6,59421945











          • $begingroup$
            This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
            $endgroup$
            – Steven Sagona
            8 hours ago
















          • $begingroup$
            This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
            $endgroup$
            – Steven Sagona
            8 hours ago















          $begingroup$
          This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
          $endgroup$
          – Steven Sagona
          8 hours ago




          $begingroup$
          This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
          $endgroup$
          – Steven Sagona
          8 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193509%2fimaginary-part-of-expression-too-difficult-to-calculate%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

          Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

          A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos