Why is delta-v is the most useful quantity for planning space travel?Could a partial space elevator be practical and useful?Gravity assist for manned travelDo we sufficiently understand mechanics of Lagrange point stationkeeping for EML2 rendezvous and assembly?Is there a simple relation between delta-v and travel time?What's the name of this maneuver for unlimited delta-v?How useful is the Interplanetary Transport Network?Calculating dV to raise apoapsis at an arbitrary point of an orbitDid Rosetta improve on models of non-gravitational effects on comet 67P's orbit?How to best think of the State Transition Matrix, and how to use it to find periodic Halo orbits?Why are most of Jupiter's moons retrograde?

Blender - show edges angles “direction”

How can I raise concerns with a new DM about XP splitting?

What is the term when two people sing in harmony, but they aren't singing the same notes?

Can a Gentile theist be saved?

Can I create an upright 7-foot × 5-foot wall with the Minor Illusion spell?

Why are on-board computers allowed to change controls without notifying the pilots?

Freedom of speech and where it applies

Partial sums of primes

How to check participants in at events?

Superhero words!

Are Warlocks Arcane or Divine?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Simple image editor tool to draw a simple box/rectangle in an existing image

Meta programming: Declare a new struct on the fly

Lifted its hind leg on or lifted its hind leg towards?

What (else) happened July 1st 1858 in London?

What was required to accept "troll"?

Simple recursive Sudoku solver

Is there a problem with hiding "forgot password" until it's needed?

Is there an Impartial Brexit Deal comparison site?

Can a controlled ghast be a leader of a pack of ghouls?

Is there a good way to store credentials outside of a password manager?

Reply ‘no position’ while the job posting is still there (‘HiWi’ position in Germany)

Can the harmonic series explain the origin of the major scale?



Why is delta-v is the most useful quantity for planning space travel?


Could a partial space elevator be practical and useful?Gravity assist for manned travelDo we sufficiently understand mechanics of Lagrange point stationkeeping for EML2 rendezvous and assembly?Is there a simple relation between delta-v and travel time?What's the name of this maneuver for unlimited delta-v?How useful is the Interplanetary Transport Network?Calculating dV to raise apoapsis at an arbitrary point of an orbitDid Rosetta improve on models of non-gravitational effects on comet 67P's orbit?How to best think of the State Transition Matrix, and how to use it to find periodic Halo orbits?Why are most of Jupiter's moons retrograde?













9












$begingroup$


Many of the questions and answers on this site make use of the concept of delta-v. Is there an easy to understand reason why delta-v, the magnitude of the change of the velocity, $|mathbfv|$, is so useful for understanding orbital mechanics and planning travel?



My experience in solving physics problems in mechanics has taught me that energy, linear momentum, or angular momentum are usually the most useful quantities. Delta-v doesn't seem to be a good proxy for any of these quantities, since it's not squared like the kinetic energy, but it's also not a vector like the linear and angular momenta.










share|improve this question









$endgroup$







  • 2




    $begingroup$
    I'd wager that it's because that quantity is an increasing value, with respect to time, it can never decrease. You cannot lose delta-v over time, you can only increase your delta-v. Also it's agnostic to the body, unlike angular momentum. For a transfer to Mars, you could say "It will take X change in velocity from LEO to LMO." Where-as what you would say for momentum you'll have to say "I need a momentum/energy increase of X from LEO then a momentum/energy decrease of X from Mars approach to LMO". (Note I actually do not know)
    $endgroup$
    – Magic Octopus Urn
    6 hours ago











  • $begingroup$
    Ultimately, we use delta-v to determine the amount of fuel needed to change the trajectory to a desired one using impulse thrusts (sudden change in velocity). But since fuel mass grows exponentially with delta-v, it’s easier to work with delta-v instead of fuel mass directly. It doesn’t matter if you slow down or speed up, the fuel consumed is the same for a given delta-v. Thus, you can accumulate each velocity change over a mission to estimate fuel needed
    $endgroup$
    – Paul
    4 hours ago















9












$begingroup$


Many of the questions and answers on this site make use of the concept of delta-v. Is there an easy to understand reason why delta-v, the magnitude of the change of the velocity, $|mathbfv|$, is so useful for understanding orbital mechanics and planning travel?



My experience in solving physics problems in mechanics has taught me that energy, linear momentum, or angular momentum are usually the most useful quantities. Delta-v doesn't seem to be a good proxy for any of these quantities, since it's not squared like the kinetic energy, but it's also not a vector like the linear and angular momenta.










share|improve this question









$endgroup$







  • 2




    $begingroup$
    I'd wager that it's because that quantity is an increasing value, with respect to time, it can never decrease. You cannot lose delta-v over time, you can only increase your delta-v. Also it's agnostic to the body, unlike angular momentum. For a transfer to Mars, you could say "It will take X change in velocity from LEO to LMO." Where-as what you would say for momentum you'll have to say "I need a momentum/energy increase of X from LEO then a momentum/energy decrease of X from Mars approach to LMO". (Note I actually do not know)
    $endgroup$
    – Magic Octopus Urn
    6 hours ago











  • $begingroup$
    Ultimately, we use delta-v to determine the amount of fuel needed to change the trajectory to a desired one using impulse thrusts (sudden change in velocity). But since fuel mass grows exponentially with delta-v, it’s easier to work with delta-v instead of fuel mass directly. It doesn’t matter if you slow down or speed up, the fuel consumed is the same for a given delta-v. Thus, you can accumulate each velocity change over a mission to estimate fuel needed
    $endgroup$
    – Paul
    4 hours ago













9












9








9


1



$begingroup$


Many of the questions and answers on this site make use of the concept of delta-v. Is there an easy to understand reason why delta-v, the magnitude of the change of the velocity, $|mathbfv|$, is so useful for understanding orbital mechanics and planning travel?



My experience in solving physics problems in mechanics has taught me that energy, linear momentum, or angular momentum are usually the most useful quantities. Delta-v doesn't seem to be a good proxy for any of these quantities, since it's not squared like the kinetic energy, but it's also not a vector like the linear and angular momenta.










share|improve this question









$endgroup$




Many of the questions and answers on this site make use of the concept of delta-v. Is there an easy to understand reason why delta-v, the magnitude of the change of the velocity, $|mathbfv|$, is so useful for understanding orbital mechanics and planning travel?



My experience in solving physics problems in mechanics has taught me that energy, linear momentum, or angular momentum are usually the most useful quantities. Delta-v doesn't seem to be a good proxy for any of these quantities, since it's not squared like the kinetic energy, but it's also not a vector like the linear and angular momenta.







orbital-mechanics






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 6 hours ago









WaterMoleculeWaterMolecule

65528




65528







  • 2




    $begingroup$
    I'd wager that it's because that quantity is an increasing value, with respect to time, it can never decrease. You cannot lose delta-v over time, you can only increase your delta-v. Also it's agnostic to the body, unlike angular momentum. For a transfer to Mars, you could say "It will take X change in velocity from LEO to LMO." Where-as what you would say for momentum you'll have to say "I need a momentum/energy increase of X from LEO then a momentum/energy decrease of X from Mars approach to LMO". (Note I actually do not know)
    $endgroup$
    – Magic Octopus Urn
    6 hours ago











  • $begingroup$
    Ultimately, we use delta-v to determine the amount of fuel needed to change the trajectory to a desired one using impulse thrusts (sudden change in velocity). But since fuel mass grows exponentially with delta-v, it’s easier to work with delta-v instead of fuel mass directly. It doesn’t matter if you slow down or speed up, the fuel consumed is the same for a given delta-v. Thus, you can accumulate each velocity change over a mission to estimate fuel needed
    $endgroup$
    – Paul
    4 hours ago












  • 2




    $begingroup$
    I'd wager that it's because that quantity is an increasing value, with respect to time, it can never decrease. You cannot lose delta-v over time, you can only increase your delta-v. Also it's agnostic to the body, unlike angular momentum. For a transfer to Mars, you could say "It will take X change in velocity from LEO to LMO." Where-as what you would say for momentum you'll have to say "I need a momentum/energy increase of X from LEO then a momentum/energy decrease of X from Mars approach to LMO". (Note I actually do not know)
    $endgroup$
    – Magic Octopus Urn
    6 hours ago











  • $begingroup$
    Ultimately, we use delta-v to determine the amount of fuel needed to change the trajectory to a desired one using impulse thrusts (sudden change in velocity). But since fuel mass grows exponentially with delta-v, it’s easier to work with delta-v instead of fuel mass directly. It doesn’t matter if you slow down or speed up, the fuel consumed is the same for a given delta-v. Thus, you can accumulate each velocity change over a mission to estimate fuel needed
    $endgroup$
    – Paul
    4 hours ago







2




2




$begingroup$
I'd wager that it's because that quantity is an increasing value, with respect to time, it can never decrease. You cannot lose delta-v over time, you can only increase your delta-v. Also it's agnostic to the body, unlike angular momentum. For a transfer to Mars, you could say "It will take X change in velocity from LEO to LMO." Where-as what you would say for momentum you'll have to say "I need a momentum/energy increase of X from LEO then a momentum/energy decrease of X from Mars approach to LMO". (Note I actually do not know)
$endgroup$
– Magic Octopus Urn
6 hours ago





$begingroup$
I'd wager that it's because that quantity is an increasing value, with respect to time, it can never decrease. You cannot lose delta-v over time, you can only increase your delta-v. Also it's agnostic to the body, unlike angular momentum. For a transfer to Mars, you could say "It will take X change in velocity from LEO to LMO." Where-as what you would say for momentum you'll have to say "I need a momentum/energy increase of X from LEO then a momentum/energy decrease of X from Mars approach to LMO". (Note I actually do not know)
$endgroup$
– Magic Octopus Urn
6 hours ago













$begingroup$
Ultimately, we use delta-v to determine the amount of fuel needed to change the trajectory to a desired one using impulse thrusts (sudden change in velocity). But since fuel mass grows exponentially with delta-v, it’s easier to work with delta-v instead of fuel mass directly. It doesn’t matter if you slow down or speed up, the fuel consumed is the same for a given delta-v. Thus, you can accumulate each velocity change over a mission to estimate fuel needed
$endgroup$
– Paul
4 hours ago




$begingroup$
Ultimately, we use delta-v to determine the amount of fuel needed to change the trajectory to a desired one using impulse thrusts (sudden change in velocity). But since fuel mass grows exponentially with delta-v, it’s easier to work with delta-v instead of fuel mass directly. It doesn’t matter if you slow down or speed up, the fuel consumed is the same for a given delta-v. Thus, you can accumulate each velocity change over a mission to estimate fuel needed
$endgroup$
– Paul
4 hours ago










1 Answer
1






active

oldest

votes


















16












$begingroup$

Your orbit is uniquely determined by a current position (three coordinates) and velocity (three more quantities to give magnitude and direction). Going places involves changing your orbit. For instance, from a circular orbit about Earth, enter an elliptical transfer orbit to the moon, then circularize your orbit about the moon. Everything you do in space travel involves changing from one orbit to another orbit, and that is done by changing your velocity.



Heavy spaceships have to change their momentum more than light spaceships, but they both have to change their velocities by the same amount. It can be done with a long, slow acceleration, or a short, fast acceleration. Whatever ship you have, and however you do it, the delta-V is the end result that you must achieve.



Your new orbit definitely does depend on your vector delta-V, but pointing your spaceship is basically a freebie. And you don't get any of your fuel back if you accelerate first in one direction and then in the opposite direction. So, as a characteristic of your spacecraft, it really kind of is a scalar quantity, even if direction does matter when you use it.






share|improve this answer









$endgroup$












  • $begingroup$
    Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
    $endgroup$
    – Magic Octopus Urn
    4 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "508"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35041%2fwhy-is-delta-v-is-the-most-useful-quantity-for-planning-space-travel%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









16












$begingroup$

Your orbit is uniquely determined by a current position (three coordinates) and velocity (three more quantities to give magnitude and direction). Going places involves changing your orbit. For instance, from a circular orbit about Earth, enter an elliptical transfer orbit to the moon, then circularize your orbit about the moon. Everything you do in space travel involves changing from one orbit to another orbit, and that is done by changing your velocity.



Heavy spaceships have to change their momentum more than light spaceships, but they both have to change their velocities by the same amount. It can be done with a long, slow acceleration, or a short, fast acceleration. Whatever ship you have, and however you do it, the delta-V is the end result that you must achieve.



Your new orbit definitely does depend on your vector delta-V, but pointing your spaceship is basically a freebie. And you don't get any of your fuel back if you accelerate first in one direction and then in the opposite direction. So, as a characteristic of your spacecraft, it really kind of is a scalar quantity, even if direction does matter when you use it.






share|improve this answer









$endgroup$












  • $begingroup$
    Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
    $endgroup$
    – Magic Octopus Urn
    4 hours ago















16












$begingroup$

Your orbit is uniquely determined by a current position (three coordinates) and velocity (three more quantities to give magnitude and direction). Going places involves changing your orbit. For instance, from a circular orbit about Earth, enter an elliptical transfer orbit to the moon, then circularize your orbit about the moon. Everything you do in space travel involves changing from one orbit to another orbit, and that is done by changing your velocity.



Heavy spaceships have to change their momentum more than light spaceships, but they both have to change their velocities by the same amount. It can be done with a long, slow acceleration, or a short, fast acceleration. Whatever ship you have, and however you do it, the delta-V is the end result that you must achieve.



Your new orbit definitely does depend on your vector delta-V, but pointing your spaceship is basically a freebie. And you don't get any of your fuel back if you accelerate first in one direction and then in the opposite direction. So, as a characteristic of your spacecraft, it really kind of is a scalar quantity, even if direction does matter when you use it.






share|improve this answer









$endgroup$












  • $begingroup$
    Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
    $endgroup$
    – Magic Octopus Urn
    4 hours ago













16












16








16





$begingroup$

Your orbit is uniquely determined by a current position (three coordinates) and velocity (three more quantities to give magnitude and direction). Going places involves changing your orbit. For instance, from a circular orbit about Earth, enter an elliptical transfer orbit to the moon, then circularize your orbit about the moon. Everything you do in space travel involves changing from one orbit to another orbit, and that is done by changing your velocity.



Heavy spaceships have to change their momentum more than light spaceships, but they both have to change their velocities by the same amount. It can be done with a long, slow acceleration, or a short, fast acceleration. Whatever ship you have, and however you do it, the delta-V is the end result that you must achieve.



Your new orbit definitely does depend on your vector delta-V, but pointing your spaceship is basically a freebie. And you don't get any of your fuel back if you accelerate first in one direction and then in the opposite direction. So, as a characteristic of your spacecraft, it really kind of is a scalar quantity, even if direction does matter when you use it.






share|improve this answer









$endgroup$



Your orbit is uniquely determined by a current position (three coordinates) and velocity (three more quantities to give magnitude and direction). Going places involves changing your orbit. For instance, from a circular orbit about Earth, enter an elliptical transfer orbit to the moon, then circularize your orbit about the moon. Everything you do in space travel involves changing from one orbit to another orbit, and that is done by changing your velocity.



Heavy spaceships have to change their momentum more than light spaceships, but they both have to change their velocities by the same amount. It can be done with a long, slow acceleration, or a short, fast acceleration. Whatever ship you have, and however you do it, the delta-V is the end result that you must achieve.



Your new orbit definitely does depend on your vector delta-V, but pointing your spaceship is basically a freebie. And you don't get any of your fuel back if you accelerate first in one direction and then in the opposite direction. So, as a characteristic of your spacecraft, it really kind of is a scalar quantity, even if direction does matter when you use it.







share|improve this answer












share|improve this answer



share|improve this answer










answered 4 hours ago









GregGreg

4966




4966











  • $begingroup$
    Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
    $endgroup$
    – Magic Octopus Urn
    4 hours ago
















  • $begingroup$
    Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
    $endgroup$
    – Magic Octopus Urn
    4 hours ago















$begingroup$
Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
$endgroup$
– Magic Octopus Urn
4 hours ago




$begingroup$
Ahhh... great point. Its agnostic to mass as well. I knew I was missing something. I am glad I didnt answer :).
$endgroup$
– Magic Octopus Urn
4 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Space Exploration Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35041%2fwhy-is-delta-v-is-the-most-useful-quantity-for-planning-space-travel%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos