A Standard Integral EquationLinear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??

Why does this part of the Space Shuttle launch pad seem to be floating in air?

Is exact Kanji stroke length important?

Greatest common substring

Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?

Can I use my Chinese passport to enter China after I acquired another citizenship?

Calculating the number of days between 2 dates in Excel

Can a malicious addon access internet history and such in chrome/firefox?

Simple image editor tool to draw a simple box/rectangle in an existing image

Is there enough fresh water in the world to eradicate the drinking water crisis?

How can I successfully establish a nationwide combat training program for a large country?

A known event to a history junkie

What should I use for Mishna study?

Why are on-board computers allowed to change controls without notifying the pilots?

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

A workplace installs custom certificates on personal devices, can this be used to decrypt HTTPS traffic?

What is the opposite of 'gravitas'?

"lassen" in meaning "sich fassen"

Why isn't KTEX's runway designation 10/28 instead of 9/27?

Installing PowerShell on 32-bit Kali OS fails

Visiting the UK as unmarried couple

What will be the benefits of Brexit?

Adding empty element to declared container without declaring type of element

What is the term when two people sing in harmony, but they aren't singing the same notes?

What to do when my ideas aren't chosen, when I strongly disagree with the chosen solution?



A Standard Integral Equation


Linear versus non-linear integral equationsUnderstanding why the roots of homogeneous difference equation must be eigenvaluesIntegral equation solution: $y(x) = 1 + lambdaintlimits_0^2cos(x-t) y(t) mathrmdt$Integrating with respect to time a double derivative $ddotphi + frac bmdotphi = fracFmr$Integral with Bessel FunctionsEigenvalue problem for integrals in multiple dimensionsStuck on finding the $2times 2$ system of differential equationsConversion of second order ode into integral equationSolving a dual integral equation involving a zeroth-order Bessel functionHow to find a basis of eigenvectors??













3












$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    8 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    8 hours ago















3












$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    8 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    8 hours ago













3












3








3





$begingroup$


Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?










share|cite|improve this question











$endgroup$




Consider the integral equation



$$phi(x) = x + lambdaint_0^1 phi(s),ds$$



Integrating with respect to $x$ from $x=0$ to $x=1$:



$$int_0^1 phi(x),dx = int_0^1x,dx + lambda int_0^1Big[int_0^1phi(s),dsBig],dx$$



which is equivalent to



$$int_0^1 phi(x),dx = frac12 + lambda int_0^1phi(s),ds$$



How can I go from here in order to solve the problem for the homogeneous case and find the corresponding characteristic values and associated rank?







linear-algebra integration matrix-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 8 hours ago







LightningStrike

















asked 8 hours ago









LightningStrikeLightningStrike

455




455







  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    8 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    8 hours ago












  • 1




    $begingroup$
    What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
    $endgroup$
    – James
    8 hours ago










  • $begingroup$
    My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
    $endgroup$
    – LightningStrike
    8 hours ago







1




1




$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
8 hours ago




$begingroup$
What is $lambda$? What do you mean by "solve the problem"? I don't see what "the problem" is supposed to mean. Of which object do you want to find the characteristic values and ranks? Have you checked your definition of $phi$?
$endgroup$
– James
8 hours ago












$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
8 hours ago




$begingroup$
My apologies, $lambda$ is an arbitrary constant. In essence I want to obtain an expression of $phi(x)$ which does not contain a function of $s$, which the initial integral equation has.
$endgroup$
– LightningStrike
8 hours ago










4 Answers
4






active

oldest

votes


















4












$begingroup$

Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



Thus $$phi(x)=x+fraclambda2(1-lambda)$$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
    Putting into FE yields:




    $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
    If $lambda=0$ then $phi(x)=x$



    if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



    If $lambda=1$ there won’t besuch $phi$.







    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
      $$
      phi(x) = sum_n geq 0 a_n x^n.
      $$

      Substituting it into your equation, we get:
      $$
      sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
      $$

      Matching up the coefficients of the difference powers of $x$, we get:
      $$
      a_n = 0 quad mbox for n geq 2,
      $$

      $$
      a_1 = 1,
      $$

      and
      $$
      a_0 = lambda left(a_0 + a_1 over 2right).
      $$

      This gives a relationship between $a_0$ and $lambda$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






        share|cite|improve this answer









        $endgroup$












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



          Thus $$phi(x)=x+fraclambda2(1-lambda)$$






          share|cite|improve this answer









          $endgroup$

















            4












            $begingroup$

            Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



            Thus $$phi(x)=x+fraclambda2(1-lambda)$$






            share|cite|improve this answer









            $endgroup$















              4












              4








              4





              $begingroup$

              Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



              Thus $$phi(x)=x+fraclambda2(1-lambda)$$






              share|cite|improve this answer









              $endgroup$



              Relabelling the dummy variable $xmapsto s$ on the LHS of your final equation, $$int_0^1phi(s),ds-lambdaint_0^1phi(s),ds=frac12\implies int_0^1phi(s),ds=frac12(1-lambda)$$



              Thus $$phi(x)=x+fraclambda2(1-lambda)$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 8 hours ago









              John DoeJohn Doe

              11.3k11239




              11.3k11239





















                  2












                  $begingroup$

                  Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                  Putting into FE yields:




                  $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                  If $lambda=0$ then $phi(x)=x$



                  if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                  If $lambda=1$ there won’t besuch $phi$.







                  share|cite|improve this answer









                  $endgroup$

















                    2












                    $begingroup$

                    Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                    Putting into FE yields:




                    $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                    If $lambda=0$ then $phi(x)=x$



                    if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                    If $lambda=1$ there won’t besuch $phi$.







                    share|cite|improve this answer









                    $endgroup$















                      2












                      2








                      2





                      $begingroup$

                      Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                      Putting into FE yields:




                      $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                      If $lambda=0$ then $phi(x)=x$



                      if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                      If $lambda=1$ there won’t besuch $phi$.







                      share|cite|improve this answer









                      $endgroup$



                      Note $int_0^1phi(s)ds$ is a constant say $a$. Your functional equation (FE) can be rewritten as: $$phi(x)=x+alambda$$
                      Putting into FE yields:




                      $$x+alambda=x+lambdaint_0^1(s+alambda )ds iff alambda=lambdabig(frac12+lambda abig)$$
                      If $lambda=0$ then $phi(x)=x$



                      if $lambdane 1$ $a=frac12+lambda aiff ( 1-lambda)a=frac12iff a=frac12-2lambda$ and then $phi(x)=x+fraclambda2-2lambda$



                      If $lambda=1$ there won’t besuch $phi$.








                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 8 hours ago









                      HAMIDINE SOUMAREHAMIDINE SOUMARE

                      1,478211




                      1,478211





















                          0












                          $begingroup$

                          If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                          $$
                          phi(x) = sum_n geq 0 a_n x^n.
                          $$

                          Substituting it into your equation, we get:
                          $$
                          sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                          $$

                          Matching up the coefficients of the difference powers of $x$, we get:
                          $$
                          a_n = 0 quad mbox for n geq 2,
                          $$

                          $$
                          a_1 = 1,
                          $$

                          and
                          $$
                          a_0 = lambda left(a_0 + a_1 over 2right).
                          $$

                          This gives a relationship between $a_0$ and $lambda$.






                          share|cite|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                            $$
                            phi(x) = sum_n geq 0 a_n x^n.
                            $$

                            Substituting it into your equation, we get:
                            $$
                            sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                            $$

                            Matching up the coefficients of the difference powers of $x$, we get:
                            $$
                            a_n = 0 quad mbox for n geq 2,
                            $$

                            $$
                            a_1 = 1,
                            $$

                            and
                            $$
                            a_0 = lambda left(a_0 + a_1 over 2right).
                            $$

                            This gives a relationship between $a_0$ and $lambda$.






                            share|cite|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                              $$
                              phi(x) = sum_n geq 0 a_n x^n.
                              $$

                              Substituting it into your equation, we get:
                              $$
                              sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                              $$

                              Matching up the coefficients of the difference powers of $x$, we get:
                              $$
                              a_n = 0 quad mbox for n geq 2,
                              $$

                              $$
                              a_1 = 1,
                              $$

                              and
                              $$
                              a_0 = lambda left(a_0 + a_1 over 2right).
                              $$

                              This gives a relationship between $a_0$ and $lambda$.






                              share|cite|improve this answer









                              $endgroup$



                              If you are after finding $phi(x)$, one approach that comes to mind is to assume it is smooth enough to have a normally convergent (so we can interchange series summation and integration) Taylor expansion on $[0, 1]$:
                              $$
                              phi(x) = sum_n geq 0 a_n x^n.
                              $$

                              Substituting it into your equation, we get:
                              $$
                              sum_n geq 0 a_n x^n = x + lambda sum_n geq 0a_n over n+1.
                              $$

                              Matching up the coefficients of the difference powers of $x$, we get:
                              $$
                              a_n = 0 quad mbox for n geq 2,
                              $$

                              $$
                              a_1 = 1,
                              $$

                              and
                              $$
                              a_0 = lambda left(a_0 + a_1 over 2right).
                              $$

                              This gives a relationship between $a_0$ and $lambda$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 8 hours ago









                              avsavs

                              3,779514




                              3,779514





















                                  0












                                  $begingroup$

                                  Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Note that since $lambdaint_0^1 phi(s),ds$ is a constant (with respect to $x$), then we can write$$phi(x)=x+a$$and by substitution we conclude that $$x+a=x+lambdaint _0^1x+adximplies\a=lambda(1over 2+a)implies\a=lambdaover 2-2lambda$$ and we obtain$$phi(x)=x+lambdaover 2-2lambdaquad,quad lambdane 1$$The case $lambda=1$ leads to no solution.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 8 hours ago









                                      Mostafa AyazMostafa Ayaz

                                      17.6k31039




                                      17.6k31039



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162106%2fa-standard-integral-equation%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

                                          Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

                                          A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos