calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraUnderstanding inverse trigonometric relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sinx=t, quad xin(frac3pi2,2pi),$ what is $tanx?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?
Why is arima in R one time step off?
Is there a verb for listening stealthily?
How long can a nation maintain a technological edge over the rest of the world?
Is there a possibility to generate a list dynamically in Latex?
What helicopter has the most rotor blades?
What happened to Viserion in Season 7?
Is Bran literally the world's memory?
Processing ADC conversion result: DMA vs Processor Registers
Why isn't everyone flabbergasted about Bran's "gift"?
Is a self contained air-bullet cartridge feasible?
What is the numbering system used for the DSN dishes?
A journey... into the MIND
Is it appropriate to mention a relatable company blog post when you're asked about the company?
Can gravitational waves pass through a black hole?
Putting Ant-Man on house arrest
Stretch a Tikz tree
France's Public Holidays' Puzzle
Why did Europeans not widely domesticate foxes?
Does using the Inspiration rules for character defects encourage My Guy Syndrome?
Writing a T-SQL stored procedure to receive 4 numbers and insert them into a table
Mechanism of the formation of peracetic acid
Has a Nobel Peace laureate ever been accused of war crimes?
What is a 'Key' in computer science?
Getting AggregateResult variables from Execute Anonymous Window
calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraUnderstanding inverse trigonometric relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sinx=t, quad xin(frac3pi2,2pi),$ what is $tanx?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?
$begingroup$
Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,
and a clockwise rotation for negative sine & tan instead of cc
and a counterclockwise rotation for negative cos ratios instead of a clockwise
ie. in degree mode
$cos^-1(-5/12)=114.62$
$sin^-1(-5/12)=-24.62$
$tan^-1(-5/12)=-22.61$
Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?
trigonometry
New contributor
$endgroup$
add a comment |
$begingroup$
Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,
and a clockwise rotation for negative sine & tan instead of cc
and a counterclockwise rotation for negative cos ratios instead of a clockwise
ie. in degree mode
$cos^-1(-5/12)=114.62$
$sin^-1(-5/12)=-24.62$
$tan^-1(-5/12)=-22.61$
Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?
trigonometry
New contributor
$endgroup$
1
$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 days ago
2
$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
2 days ago
$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 days ago
add a comment |
$begingroup$
Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,
and a clockwise rotation for negative sine & tan instead of cc
and a counterclockwise rotation for negative cos ratios instead of a clockwise
ie. in degree mode
$cos^-1(-5/12)=114.62$
$sin^-1(-5/12)=-24.62$
$tan^-1(-5/12)=-22.61$
Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?
trigonometry
New contributor
$endgroup$
Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,
and a clockwise rotation for negative sine & tan instead of cc
and a counterclockwise rotation for negative cos ratios instead of a clockwise
ie. in degree mode
$cos^-1(-5/12)=114.62$
$sin^-1(-5/12)=-24.62$
$tan^-1(-5/12)=-22.61$
Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?
trigonometry
trigonometry
New contributor
New contributor
edited 2 days ago
N. F. Taussig
45.5k103358
45.5k103358
New contributor
asked 2 days ago
Allan HenriquesAllan Henriques
688
688
New contributor
New contributor
1
$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 days ago
2
$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
2 days ago
$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 days ago
add a comment |
1
$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 days ago
2
$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
2 days ago
$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 days ago
1
1
$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 days ago
$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 days ago
2
2
$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
2 days ago
$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
2 days ago
$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 days ago
$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.
For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:
For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.
Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.
$endgroup$
2
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.
For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:
For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.
Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.
$endgroup$
2
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
add a comment |
$begingroup$
This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.
For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:
For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.
Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.
$endgroup$
2
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
add a comment |
$begingroup$
This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.
For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:
For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.
Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.
$endgroup$
This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.
For $sin(x)$ the region that we take is $-fracpi2leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode, as seen in the following plot:
For $cos(x)$ the region we take is $0leq x leq pi$, or $0^circ leq x leq 180^circ$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.
Lastly, for $tan(x)$ we can take a full period around the origin, so $-fracpi2 leq x leq fracpi2$, or $-90^circ leq x leq 90^circ$ in degree mode.
answered 2 days ago
DMcMorDMcMor
3,11521431
3,11521431
2
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
add a comment |
2
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
2
2
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 days ago
add a comment |
Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.
Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.
Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.
Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 days ago
2
$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and between the start and end of a superscript. E.g. $cos^-1(-5/12)=114.62$
$endgroup$
– man on laptop
2 days ago
$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
2 days ago