Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manaramod Distributive Law, factoring $!!bmod!!:$ $ abbmod ac = a(bbmod c)$Remainder of polynomial by product of 2 polynomials$f$ dividing by $x + 1$ have remainder 4, when dividing with $x^2 + 1$ have remainder 2x+3. Find remainder dividing polynomial with($x+1$)($x^2+1$)chinese remainder theorem proofChinese Remainder Theorem InterpretationChinese Remainder Theorem clarificationI can't use Chinese Remainder Theorem.Chinese Remainder Theorem for $xequiv 0 pmody$Comparing two statements of Chinese Remainder Theorem (Sun-Ze Theorem)Chinese remainder theorem methodChinese Remainder Theorem problem 7Chinese Remainder Theorem with 0 mod nSolve a system of congruences using the Chinese Remainder Theorem
Why isn't everyone flabbergasted about Bran's "gift"?
Getting AggregateResult variables from Execute Anonymous Window
Protagonist's race is hidden - should I reveal it?
Determinant of a matrix with 2 equal rows
Was there ever a LEGO store in Miami International Airport?
Why isPrototypeOf() returns false?
/bin/ls sorts differently than just ls
Suing a Police Officer Instead of the Police Department
Does Prince Arnaud cause someone holding the Princess to lose?
Are these square matrices always diagonalisable?
How to translate "red flag" into Spanish?
Where can I find how to tex symbols for different fonts?
How would you suggest I follow up with coworkers about our deadline that's today?
Writing a T-SQL stored procedure to receive 4 numbers and insert them into a table
Why does Java have support for time zone offsets with seconds precision?
Are there existing rules/lore for MTG planeswalkers?
What's parked in Mil Moscow helicopter plant?
What's called a person who works as someone who puts products on shelves in stores?
Was Objective-C really a hindrance to Apple software development?
What is /etc/mtab in Linux?
Why aren't road bicycle wheels tiny?
Co-worker works way more than he should
Has a Nobel Peace laureate ever been accused of war crimes?
What is the definining line between a helicopter and a drone a person can ride in?
Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manaramod Distributive Law, factoring $!!bmod!!:$ $ abbmod ac = a(bbmod c)$Remainder of polynomial by product of 2 polynomials$f$ dividing by $x + 1$ have remainder 4, when dividing with $x^2 + 1$ have remainder 2x+3. Find remainder dividing polynomial with($x+1$)($x^2+1$)chinese remainder theorem proofChinese Remainder Theorem InterpretationChinese Remainder Theorem clarificationI can't use Chinese Remainder Theorem.Chinese Remainder Theorem for $xequiv 0 pmody$Comparing two statements of Chinese Remainder Theorem (Sun-Ze Theorem)Chinese remainder theorem methodChinese Remainder Theorem problem 7Chinese Remainder Theorem with 0 mod nSolve a system of congruences using the Chinese Remainder Theorem
$begingroup$
I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.
Here's an example with integers:
$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$
Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:
$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)
$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence
$bullet , M_i$ denotes $dfracMm_i$
$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).
Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).
Now I want to apply the same technique to the following:
$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$
where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:
$M = (x^4)(x^2 + 1)$
$M_1 = x^4$
$M_2 = x^2 + 1$
Here's where I run into a problem. I need to find $y_1, y_2$ such that
$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$
But how does one find $y_1, y_2$?
abstract-algebra ring-theory chinese-remainder-theorem
$endgroup$
add a comment |
$begingroup$
I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.
Here's an example with integers:
$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$
Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:
$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)
$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence
$bullet , M_i$ denotes $dfracMm_i$
$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).
Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).
Now I want to apply the same technique to the following:
$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$
where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:
$M = (x^4)(x^2 + 1)$
$M_1 = x^4$
$M_2 = x^2 + 1$
Here's where I run into a problem. I need to find $y_1, y_2$ such that
$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$
But how does one find $y_1, y_2$?
abstract-algebra ring-theory chinese-remainder-theorem
$endgroup$
1
$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
2 days ago
$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
2 days ago
add a comment |
$begingroup$
I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.
Here's an example with integers:
$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$
Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:
$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)
$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence
$bullet , M_i$ denotes $dfracMm_i$
$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).
Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).
Now I want to apply the same technique to the following:
$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$
where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:
$M = (x^4)(x^2 + 1)$
$M_1 = x^4$
$M_2 = x^2 + 1$
Here's where I run into a problem. I need to find $y_1, y_2$ such that
$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$
But how does one find $y_1, y_2$?
abstract-algebra ring-theory chinese-remainder-theorem
$endgroup$
I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbbQ$, but I'm getting stuck.
Here's an example with integers:
$begincasesx equiv 1 , (mathrmmod , 5) \
x equiv 2 , (mathrmmod , 7) \
x equiv 3 , (mathrmmod , 9) \
x equiv 4 , (mathrmmod , 11).
endcases$
Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:
$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)
$bullet , m_i $ denotes the modulus in the $i^mathrmth$ congruence
$bullet , M_i$ denotes $dfracMm_i$
$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).
Then $x = displaystyle sum_i = 1^n a_iM_iy_i$, and this solution is unique (mod $M$).
Now I want to apply the same technique to the following:
$begincases
f(x) equiv 1 , (mathrm mod , x^2 + 1) \
f(x) equiv x , (mathrmmod , x^4),
endcases$
where $f(x) in mathbbQ(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:
$M = (x^4)(x^2 + 1)$
$M_1 = x^4$
$M_2 = x^2 + 1$
Here's where I run into a problem. I need to find $y_1, y_2$ such that
$begincases
y_1 (x^4) equiv 1 , (mathrmmod , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrmmod , x^4).
endcases$
But how does one find $y_1, y_2$?
abstract-algebra ring-theory chinese-remainder-theorem
abstract-algebra ring-theory chinese-remainder-theorem
asked 2 days ago
JunglemathJunglemath
6017
6017
1
$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
2 days ago
$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
2 days ago
add a comment |
1
$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
2 days ago
$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
2 days ago
1
1
$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
2 days ago
$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
2 days ago
$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
2 days ago
$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$
$endgroup$
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
2
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
|
show 1 more comment
$begingroup$
Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:
$ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$
Remark $ $ Here are further examples done using MDL (an operational form of CRT).
You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196235%2fadapting-the-chinese-remainder-theorem-crt-for-integers-to-polynomials%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$
$endgroup$
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
2
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
|
show 1 more comment
$begingroup$
To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$
$endgroup$
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
2
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
|
show 1 more comment
$begingroup$
To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$
$endgroup$
To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$
edited 2 days ago
answered 2 days ago
MelodyMelody
1,48412
1,48412
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
2
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
|
show 1 more comment
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
2
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
2
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
Is there an algorithmic way of solving these, rather than relying on intuition?
$endgroup$
– Junglemath
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
$begingroup$
@Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbbQ[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
$endgroup$
– Paolo
2 days ago
2
2
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
$begingroup$
@Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbbQ[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
$endgroup$
– Melody
2 days ago
2
2
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
$begingroup$
@Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
$endgroup$
– Melody
2 days ago
2
2
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
$begingroup$
@Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
$endgroup$
– Bill Dubuque
2 days ago
|
show 1 more comment
$begingroup$
Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:
$ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$
Remark $ $ Here are further examples done using MDL (an operational form of CRT).
You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).
$endgroup$
add a comment |
$begingroup$
Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:
$ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$
Remark $ $ Here are further examples done using MDL (an operational form of CRT).
You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).
$endgroup$
add a comment |
$begingroup$
Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:
$ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$
Remark $ $ Here are further examples done using MDL (an operational form of CRT).
You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).
$endgroup$
Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:
$ f-x,bmod, x^large 4(x^large 2!+!1), =, x^large 4underbraceleft[dfraccolor#c00f-xcolor#0a0x^large 4bmod x^large 2!+!1right]_large color#0a0x^Large 4 equiv 1 rm by x^Large 2 equiv -1 =, x^large 4[1-x], $ by $,color#c00fequiv 1pmod!x^large 2!+!1$
Remark $ $ Here are further examples done using MDL (an operational form of CRT).
You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).
edited 2 days ago
answered 2 days ago
Bill DubuqueBill Dubuque
214k29198660
214k29198660
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196235%2fadapting-the-chinese-remainder-theorem-crt-for-integers-to-polynomials%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
2 days ago
$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
2 days ago