Using Rolle's theorem to show an equation has only one real root The Next CEO of Stack OverflowProving number of roots of a function using Rolle's theoremUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Proof polynomial has only one real root.prove to have at least one real root by Rolle's theoremProve that the equation $x + cos(x) + e^x = 0$ has *exactly* one rootProof using Rolle's theoremUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremProve, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root

Prepend last line of stdin to entire stdin

Proper way to express "He disappeared them"

Domestic-to-international connection at Orlando (MCO)

What connection does MS Office have to Netscape Navigator?

WOW air has ceased operation, can I get my tickets refunded?

Running a General Election and the European Elections together

Why the difference in type-inference over the as-pattern in two similar function definitions?

Necessary condition on homology group for a set to be contractible

Grabbing quick drinks

What steps are necessary to read a Modern SSD in Medieval Europe?

Is French Guiana a (hard) EU border?

Is a distribution that is normal, but highly skewed considered Gaussian?

Is it professional to write unrelated content in an almost-empty email?

What does "Its cash flow is deeply negative" mean?

Why isn't the Mueller report being released completely and unredacted?

Why does the flight controls check come before arming the autobrake on the A320?

Is it convenient to ask the journal's editor for two additional days to complete a review?

Find non-case sensitive string in a mixed list of elements?

RigExpert AA-35 - Interpreting The Information

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Dominated convergence theorem - what sequence?

Do I need to write [sic] when a number is less than 10 but isn't written out?

Why didn't Khan get resurrected in the Genesis Explosion?

TikZ: How to reverse arrow direction without switching start/end point?



Using Rolle's theorem to show an equation has only one real root



The Next CEO of Stack OverflowProving number of roots of a function using Rolle's theoremUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Proof polynomial has only one real root.prove to have at least one real root by Rolle's theoremProve that the equation $x + cos(x) + e^x = 0$ has *exactly* one rootProof using Rolle's theoremUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremProve, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root










2












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    11 mins ago
















2












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    11 mins ago














2












2








2





$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$





Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?







calculus applications rolles-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 36 mins ago









Eevee Trainer

9,06731640




9,06731640










asked 45 mins ago









blue_eyed_...blue_eyed_...

3,30221755




3,30221755











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    11 mins ago

















  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    11 mins ago
















$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
11 mins ago





$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
11 mins ago











1 Answer
1






active

oldest

votes


















5












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    35 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    33 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    29 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    18 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    15 mins ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-an-equation-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    35 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    33 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    29 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    18 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    15 mins ago















5












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    35 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    33 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    29 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    18 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    15 mins ago













5












5








5





$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$



Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 16 mins ago

























answered 39 mins ago









Eevee TrainerEevee Trainer

9,06731640




9,06731640











  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    35 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    33 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    29 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    18 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    15 mins ago
















  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    35 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    33 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    29 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    18 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    15 mins ago















$begingroup$
I don't understand the second para.
$endgroup$
– blue_eyed_...
35 mins ago




$begingroup$
I don't understand the second para.
$endgroup$
– blue_eyed_...
35 mins ago












$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
33 mins ago





$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
33 mins ago





1




1




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– blue_eyed_...
29 mins ago




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– blue_eyed_...
29 mins ago












$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
18 mins ago




$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
18 mins ago












$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– blue_eyed_...
15 mins ago




$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– blue_eyed_...
15 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-an-equation-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos