A small doubt about the dominated convergence theorem The Next CEO of Stack OverflowIs Lebesgue's Dominated Convergence Theorem a logical equivalence?Lebesgue's Dominated Convergence Theorem questionsExample about Dominated Convergence TheoremDominated Convergence TheoremNecessity of generalization of Dominated Convergence theoremSeeking counterexample for Dominated Convergence theoremHypothesis of dominated convergence theoremDominated convergence theorem vs continuityBartle's proof of Lebesgue Dominated Convergence TheoremTheorem similar to dominated convergence theorem

Chain wire methods together in Lightning Web Components

Where do students learn to solve polynomial equations these days?

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?

Why is my new battery behaving weirdly?

I want to delete every two lines after 3rd lines in file contain very large number of lines :

Some questions about different axiomatic systems for neighbourhoods

Reference request: Grassmannian and Plucker coordinates in type B, C, D

Why didn't Khan get resurrected in the Genesis Explosion?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

How to edit “Name” property in GCI output?

Is it possible to replace duplicates of a character with one character using tr

Make solar eclipses exceedingly rare, but still have new moons

Can we say or write : "No, it'sn't"?

Does increasing your ability score affect your main stat?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

How to place nodes around a circle from some initial angle?

How to check if all elements of 1 list are in the *same quantity* and in any order, in the list2?

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

Proper way to express "He disappeared them"

Running a General Election and the European Elections together

Solving system of ODEs with extra parameter

How do I align (1) and (2)?

Newlines in BSD sed vs gsed

Grabbing quick drinks



A small doubt about the dominated convergence theorem



The Next CEO of Stack OverflowIs Lebesgue's Dominated Convergence Theorem a logical equivalence?Lebesgue's Dominated Convergence Theorem questionsExample about Dominated Convergence TheoremDominated Convergence TheoremNecessity of generalization of Dominated Convergence theoremSeeking counterexample for Dominated Convergence theoremHypothesis of dominated convergence theoremDominated convergence theorem vs continuityBartle's proof of Lebesgue Dominated Convergence TheoremTheorem similar to dominated convergence theorem










3












$begingroup$



Theorem $mathbfA.2.11$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$



    Theorem $mathbfA.2.11$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




    I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?










    share|cite|improve this question











    $endgroup$














      3












      3








      3


      1



      $begingroup$



      Theorem $mathbfA.2.11$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




      I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?










      share|cite|improve this question











      $endgroup$





      Theorem $mathbfA.2.11$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




      I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?







      measure-theory convergence lebesgue-integral






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 50 mins ago









      Rócherz

      3,0013821




      3,0013821










      asked 1 hour ago









      Ricardo FreireRicardo Freire

      579211




      579211




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac1n mathbf1_[0,n](x).
          $$

          Clearly, $f_n in L^1(mathbbR)$ for each $n in mathbbN$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbbR$. However,
          beginalign*
          lim_n to infty int_mathbbR f_n,mathrmdm = lim_n to infty int_0^n frac1n,mathrmdx = 1 neq 0.
          endalign*



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrakM,mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_n to infty int_E f_n,mathrmdmu = int_E f,mathrmdmu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            32 mins ago


















          2












          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_[n,n+1]$ on $mathbf R_ge 0$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_ge 0$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_ntoinfty int f_n = int lim_ntoinftyf_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.




          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_ge 0$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            31 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168945%2fa-small-doubt-about-the-dominated-convergence-theorem%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac1n mathbf1_[0,n](x).
          $$

          Clearly, $f_n in L^1(mathbbR)$ for each $n in mathbbN$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbbR$. However,
          beginalign*
          lim_n to infty int_mathbbR f_n,mathrmdm = lim_n to infty int_0^n frac1n,mathrmdx = 1 neq 0.
          endalign*



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrakM,mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_n to infty int_E f_n,mathrmdmu = int_E f,mathrmdmu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            32 mins ago















          3












          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac1n mathbf1_[0,n](x).
          $$

          Clearly, $f_n in L^1(mathbbR)$ for each $n in mathbbN$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbbR$. However,
          beginalign*
          lim_n to infty int_mathbbR f_n,mathrmdm = lim_n to infty int_0^n frac1n,mathrmdx = 1 neq 0.
          endalign*



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrakM,mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_n to infty int_E f_n,mathrmdmu = int_E f,mathrmdmu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            32 mins ago













          3












          3








          3





          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac1n mathbf1_[0,n](x).
          $$

          Clearly, $f_n in L^1(mathbbR)$ for each $n in mathbbN$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbbR$. However,
          beginalign*
          lim_n to infty int_mathbbR f_n,mathrmdm = lim_n to infty int_0^n frac1n,mathrmdx = 1 neq 0.
          endalign*



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrakM,mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_n to infty int_E f_n,mathrmdmu = int_E f,mathrmdmu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$



          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac1n mathbf1_[0,n](x).
          $$

          Clearly, $f_n in L^1(mathbbR)$ for each $n in mathbbN$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbbR$. However,
          beginalign*
          lim_n to infty int_mathbbR f_n,mathrmdm = lim_n to infty int_0^n frac1n,mathrmdx = 1 neq 0.
          endalign*



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrakM,mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_n to infty int_E f_n,mathrmdmu = int_E f,mathrmdmu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 14 mins ago

























          answered 46 mins ago









          rolandcyprolandcyp

          1,856315




          1,856315











          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            32 mins ago
















          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            32 mins ago















          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          32 mins ago




          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          32 mins ago











          2












          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_[n,n+1]$ on $mathbf R_ge 0$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_ge 0$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_ntoinfty int f_n = int lim_ntoinftyf_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.




          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_ge 0$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            31 mins ago















          2












          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_[n,n+1]$ on $mathbf R_ge 0$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_ge 0$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_ntoinfty int f_n = int lim_ntoinftyf_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.




          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_ge 0$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            31 mins ago













          2












          2








          2





          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_[n,n+1]$ on $mathbf R_ge 0$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_ge 0$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_ntoinfty int f_n = int lim_ntoinftyf_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.




          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_ge 0$.






          share|cite|improve this answer









          $endgroup$



          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_[n,n+1]$ on $mathbf R_ge 0$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_ge 0$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_ntoinfty int f_n = int lim_ntoinftyf_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.




          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_ge 0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 44 mins ago









          Alex OrtizAlex Ortiz

          11.2k21441




          11.2k21441











          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            31 mins ago
















          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            31 mins ago















          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          31 mins ago




          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          31 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168945%2fa-small-doubt-about-the-dominated-convergence-theorem%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

          Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

          A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos