Question about the proof of Second Isomorphism TheoremIsomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem

What if a revenant (monster) gains fire resistance?

Creature in Shazam mid-credits scene?

Melting point of aspirin, contradicting sources

Create all possible words using a set or letters

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed

Problem with TransformedDistribution

What prevents the use of a multi-segment ILS for non-straight approaches?

How to explain what's wrong with this application of the chain rule?

Longest common substring in linear time

Pre-mixing cryogenic fuels and using only one fuel tank

Fear of getting stuck on one programming language / technology that is not used in my country

Yosemite Fire Rings - What to Expect?

How do I color the graph in datavisualization?

The IT department bottlenecks progress. How should I handle this?

Is the U.S. Code copyrighted by the Government?

How should I respond when I lied about my education and the company finds out through background check?

The Staircase of Paint

Where did Heinlein say "Once you get to Earth orbit, you're halfway to anywhere in the Solar System"?

Why is so much work done on numerical verification of the Riemann Hypothesis?

Non-trope happy ending?

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Removing files under particular conditions (number of files, file age)

Is it safe to use olive oil to clean the ear wax?



Question about the proof of Second Isomorphism Theorem


Isomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem













4












$begingroup$


The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$



There is the proof of Abstract Algebra Thomas by W. Judson:




Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$




My question:



Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



Thank you.










share|cite|improve this question









New contributor




NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    4












    $begingroup$


    The Second Isomorphism Theorem:
    Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
    $$H/(Hcap N)cong(HN)/N$$



    There is the proof of Abstract Algebra Thomas by W. Judson:




    Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
    $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
    By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
    $$HN/N=phi(H)cong H/kerphi$$
    Since
    $$kerphi=hin H:hin N=Hcap N$$
    $HN/N=phi(H)cong H/Hcap N$




    My question:



    Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



    Thank you.










    share|cite|improve this question









    New contributor




    NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      4












      4








      4





      $begingroup$


      The Second Isomorphism Theorem:
      Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
      $$H/(Hcap N)cong(HN)/N$$



      There is the proof of Abstract Algebra Thomas by W. Judson:




      Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
      $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
      By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
      $$HN/N=phi(H)cong H/kerphi$$
      Since
      $$kerphi=hin H:hin N=Hcap N$$
      $HN/N=phi(H)cong H/Hcap N$




      My question:



      Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



      Thank you.










      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      The Second Isomorphism Theorem:
      Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
      $$H/(Hcap N)cong(HN)/N$$



      There is the proof of Abstract Algebra Thomas by W. Judson:




      Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
      $$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
      By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
      $$HN/N=phi(H)cong H/kerphi$$
      Since
      $$kerphi=hin H:hin N=Hcap N$$
      $HN/N=phi(H)cong H/Hcap N$




      My question:



      Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.



      Thank you.







      abstract-algebra group-theory group-isomorphism group-homomorphism






      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago









      Andrews

      1,2761421




      1,2761421






      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 4 hours ago









      NiaBieNiaBie

      232




      232




      New contributor




      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      NiaBie is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            NiaBie is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.






                share|cite|improve this answer









                $endgroup$



                The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Joshua MundingerJoshua Mundinger

                2,7621028




                2,7621028




















                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.












                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.











                    NiaBie is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

                    Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

                    A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos