How can we generalize the fact of finite dimensional vector space to an infinte dimensional case?$k[x]$-module and cyclic module over a finite dimensional vector spaceSubspace of a finite dimensional space is finite dimensionalIf V is an infinite-dimensional vector space, and S is an infinite-dimensional subspace of V, must the dimension of V/S be finite? ExplainWhy is an infinite dimensional space so different than a finite dimensional one?base for finite dimensional vector space is not infinite dimensional vector space?Any finite-dimensional vector space is the dual space of anotherHaving Trouble Understanding Meaning Of A Finite-Dimensional Vector SpaceProve that “Every subspaces of a finite-dimensional vector space is finite-dimensional”Ring as a finite dimensional Vector space over a field KQuestion regarding basis and dimension
Should I stop contributing to retirement accounts?
Yosemite Fire Rings - What to Expect?
Is a bound state a stationary state?
What was this official D&D 3.5e Lovecraft-flavored rulebook?
Argument list too long when zipping large list of certain files in a folder
In Qur'an 7:161, why is "say the word of humility" translated in various ways?
How do you make your own symbol when Detexify fails?
Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?
Create all possible words using a set or letters
What are the purposes of autoencoders?
Open a doc from terminal, but not by its name
Lowest total scrabble score
Closed-form expression for certain product
How can "mimic phobia" be cured or prevented?
why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?
Redundant comparison & "if" before assignment
Can I sign legal documents with a smiley face?
Why do we read the Megillah by night and by day?
Creature in Shazam mid-credits scene?
Why did the HMS Bounty go back to a time when whales are already rare?
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
The IT department bottlenecks progress. How should I handle this?
Where does the bonus feat in the cleric starting package come from?
How should I respond when I lied about my education and the company finds out through background check?
How can we generalize the fact of finite dimensional vector space to an infinte dimensional case?
$k[x]$-module and cyclic module over a finite dimensional vector spaceSubspace of a finite dimensional space is finite dimensionalIf V is an infinite-dimensional vector space, and S is an infinite-dimensional subspace of V, must the dimension of V/S be finite? ExplainWhy is an infinite dimensional space so different than a finite dimensional one?base for finite dimensional vector space is not infinite dimensional vector space?Any finite-dimensional vector space is the dual space of anotherHaving Trouble Understanding Meaning Of A Finite-Dimensional Vector SpaceProve that “Every subspaces of a finite-dimensional vector space is finite-dimensional”Ring as a finite dimensional Vector space over a field KQuestion regarding basis and dimension
$begingroup$
I am reading vector space from Friedberg. There in the last section they told about infinite dimensional vector space but there is not sufficient contents. Now my question is why can't we define infinite sum? If this is the case then can anyone please tell me the difference between infinite sum in the series in analysis and here? How infinite sum in series is defined and not here?
I know I'm going wrong somewhere, please help me to find it out.
linear-algebra vector-spaces
$endgroup$
add a comment |
$begingroup$
I am reading vector space from Friedberg. There in the last section they told about infinite dimensional vector space but there is not sufficient contents. Now my question is why can't we define infinite sum? If this is the case then can anyone please tell me the difference between infinite sum in the series in analysis and here? How infinite sum in series is defined and not here?
I know I'm going wrong somewhere, please help me to find it out.
linear-algebra vector-spaces
$endgroup$
$begingroup$
Infinite sums in analysis are defined as limits of the sequence of finite partial sums. In general there is no limit in vector spaces.
$endgroup$
– Jens Schwaiger
2 hours ago
$begingroup$
@Jens Schwaiger please elaborate, I cant understand about how can we define infinite sum by limit of a sequence? And also what are the bounds that we can't do in vector spaces?
$endgroup$
– user639336
2 hours ago
$begingroup$
@user639336 What you are asking is not at all related to the dimension of vector spaces.
$endgroup$
– amsmath
2 hours ago
add a comment |
$begingroup$
I am reading vector space from Friedberg. There in the last section they told about infinite dimensional vector space but there is not sufficient contents. Now my question is why can't we define infinite sum? If this is the case then can anyone please tell me the difference between infinite sum in the series in analysis and here? How infinite sum in series is defined and not here?
I know I'm going wrong somewhere, please help me to find it out.
linear-algebra vector-spaces
$endgroup$
I am reading vector space from Friedberg. There in the last section they told about infinite dimensional vector space but there is not sufficient contents. Now my question is why can't we define infinite sum? If this is the case then can anyone please tell me the difference between infinite sum in the series in analysis and here? How infinite sum in series is defined and not here?
I know I'm going wrong somewhere, please help me to find it out.
linear-algebra vector-spaces
linear-algebra vector-spaces
edited 2 hours ago
Rócherz
2,9863821
2,9863821
asked 2 hours ago
user639336user639336
62
62
$begingroup$
Infinite sums in analysis are defined as limits of the sequence of finite partial sums. In general there is no limit in vector spaces.
$endgroup$
– Jens Schwaiger
2 hours ago
$begingroup$
@Jens Schwaiger please elaborate, I cant understand about how can we define infinite sum by limit of a sequence? And also what are the bounds that we can't do in vector spaces?
$endgroup$
– user639336
2 hours ago
$begingroup$
@user639336 What you are asking is not at all related to the dimension of vector spaces.
$endgroup$
– amsmath
2 hours ago
add a comment |
$begingroup$
Infinite sums in analysis are defined as limits of the sequence of finite partial sums. In general there is no limit in vector spaces.
$endgroup$
– Jens Schwaiger
2 hours ago
$begingroup$
@Jens Schwaiger please elaborate, I cant understand about how can we define infinite sum by limit of a sequence? And also what are the bounds that we can't do in vector spaces?
$endgroup$
– user639336
2 hours ago
$begingroup$
@user639336 What you are asking is not at all related to the dimension of vector spaces.
$endgroup$
– amsmath
2 hours ago
$begingroup$
Infinite sums in analysis are defined as limits of the sequence of finite partial sums. In general there is no limit in vector spaces.
$endgroup$
– Jens Schwaiger
2 hours ago
$begingroup$
Infinite sums in analysis are defined as limits of the sequence of finite partial sums. In general there is no limit in vector spaces.
$endgroup$
– Jens Schwaiger
2 hours ago
$begingroup$
@Jens Schwaiger please elaborate, I cant understand about how can we define infinite sum by limit of a sequence? And also what are the bounds that we can't do in vector spaces?
$endgroup$
– user639336
2 hours ago
$begingroup$
@Jens Schwaiger please elaborate, I cant understand about how can we define infinite sum by limit of a sequence? And also what are the bounds that we can't do in vector spaces?
$endgroup$
– user639336
2 hours ago
$begingroup$
@user639336 What you are asking is not at all related to the dimension of vector spaces.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@user639336 What you are asking is not at all related to the dimension of vector spaces.
$endgroup$
– amsmath
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It's not that one can't define an infinite sum, the issue is that in a space with a binary operation an infinite sum does not automatically make sense. You can't define an infinite sum solely in terms of the finite sum. You need to construct the sequence of partial sums, which then needs to converge.
However, in order to define convergence, you need something like a topology, and we're no longer talking simply about vector spaces anymore: we've moved on to topological vector spaces. So one could arguably say that in a plain vector space, which explicitly isn't given a topology, you can't define an infinite sum.
$endgroup$
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
1
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
1
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
|
show 3 more comments
$begingroup$
In analysis you probably defined infinte sum as follows. Let us say that $a_n$ is some sequance of real numbers. We define partial sums $S_n$ as follows.
$$S_1 = a_1 $$
$$S_2 = a_1 + a_2 $$
$$...$$
$$S_n = a_1 + a_2 + ... + a_n$$
Now we define:
$$S = sum_n=1^inftya_n := lim_n to inftyS_n $$
The point of this is that you see that it is good to have a concept of limit (convergance) to define infinte sum. Limit involves, intuitivley speaking, that one things get closer to another; and that requaries notion of distance. If you have a vector space only, you still do not have a way to mesure length of a vector.
So it would be good if you had some way to mesure length of a vector and you can do that by norm. One way to create a norm on your vector space is to induce it with a inner (scalar) product. Then you can define that sequance of vectors $v_n$ converges to some vector $w$ if sequnace of norms $||v_n||$ of vector converges to norm $||w||$. Then you will be able to define infinte sum of vectors because you have notion of convergance.
I kept it brief, but if you do have any question, feel free to ask.
$endgroup$
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160037%2fhow-can-we-generalize-the-fact-of-finite-dimensional-vector-space-to-an-infinte%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's not that one can't define an infinite sum, the issue is that in a space with a binary operation an infinite sum does not automatically make sense. You can't define an infinite sum solely in terms of the finite sum. You need to construct the sequence of partial sums, which then needs to converge.
However, in order to define convergence, you need something like a topology, and we're no longer talking simply about vector spaces anymore: we've moved on to topological vector spaces. So one could arguably say that in a plain vector space, which explicitly isn't given a topology, you can't define an infinite sum.
$endgroup$
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
1
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
1
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
|
show 3 more comments
$begingroup$
It's not that one can't define an infinite sum, the issue is that in a space with a binary operation an infinite sum does not automatically make sense. You can't define an infinite sum solely in terms of the finite sum. You need to construct the sequence of partial sums, which then needs to converge.
However, in order to define convergence, you need something like a topology, and we're no longer talking simply about vector spaces anymore: we've moved on to topological vector spaces. So one could arguably say that in a plain vector space, which explicitly isn't given a topology, you can't define an infinite sum.
$endgroup$
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
1
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
1
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
|
show 3 more comments
$begingroup$
It's not that one can't define an infinite sum, the issue is that in a space with a binary operation an infinite sum does not automatically make sense. You can't define an infinite sum solely in terms of the finite sum. You need to construct the sequence of partial sums, which then needs to converge.
However, in order to define convergence, you need something like a topology, and we're no longer talking simply about vector spaces anymore: we've moved on to topological vector spaces. So one could arguably say that in a plain vector space, which explicitly isn't given a topology, you can't define an infinite sum.
$endgroup$
It's not that one can't define an infinite sum, the issue is that in a space with a binary operation an infinite sum does not automatically make sense. You can't define an infinite sum solely in terms of the finite sum. You need to construct the sequence of partial sums, which then needs to converge.
However, in order to define convergence, you need something like a topology, and we're no longer talking simply about vector spaces anymore: we've moved on to topological vector spaces. So one could arguably say that in a plain vector space, which explicitly isn't given a topology, you can't define an infinite sum.
answered 2 hours ago
Matt SamuelMatt Samuel
39k63769
39k63769
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
1
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
1
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
|
show 3 more comments
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
1
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
1
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir you are saying topological vector spaces, are they define infinite as a limit of a sequence or anything else? But sir whenever it's about infinite sum of a series we write something lile a1e1+a2e2+........ doesn't it seems like ordinary binary operation? Secondly I read somewhere we can add if all elements are zero except finitely many. Please help sir about clearing my ideas.
$endgroup$
– user639336
2 hours ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
$begingroup$
sir somehow are you want to mean topological vector spaces as functional analysis?
$endgroup$
– user639336
1 hour ago
1
1
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
@user639 If all are zero but finitely many, that will converge in any topology so we don't need an explicit one. Just writing the infinite sum in general doesn't tell you which element of the vector space you're talking about. What if I wrote $1+1+1+cdots$? This gives the sequence of partial sums $1,2,3,ldots$, and this doesn't converge. Would you say that that was a silly example? We can't distinguish this from any other example without a topology. In fact you could define a topology where this actually does converge.
$endgroup$
– Matt Samuel
1 hour ago
1
1
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
@user Topological vector spaces certainly do occur frequently in functional analysis, but they are also studied outside of that subject.
$endgroup$
– Matt Samuel
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
$begingroup$
sir this means the only essence of topology is laid on infinite dimensional vector space? I mean in finite one the sum is defined, but in the infinite one the infinite sum is'nt.
$endgroup$
– user639336
1 hour ago
|
show 3 more comments
$begingroup$
In analysis you probably defined infinte sum as follows. Let us say that $a_n$ is some sequance of real numbers. We define partial sums $S_n$ as follows.
$$S_1 = a_1 $$
$$S_2 = a_1 + a_2 $$
$$...$$
$$S_n = a_1 + a_2 + ... + a_n$$
Now we define:
$$S = sum_n=1^inftya_n := lim_n to inftyS_n $$
The point of this is that you see that it is good to have a concept of limit (convergance) to define infinte sum. Limit involves, intuitivley speaking, that one things get closer to another; and that requaries notion of distance. If you have a vector space only, you still do not have a way to mesure length of a vector.
So it would be good if you had some way to mesure length of a vector and you can do that by norm. One way to create a norm on your vector space is to induce it with a inner (scalar) product. Then you can define that sequance of vectors $v_n$ converges to some vector $w$ if sequnace of norms $||v_n||$ of vector converges to norm $||w||$. Then you will be able to define infinte sum of vectors because you have notion of convergance.
I kept it brief, but if you do have any question, feel free to ask.
$endgroup$
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
|
show 2 more comments
$begingroup$
In analysis you probably defined infinte sum as follows. Let us say that $a_n$ is some sequance of real numbers. We define partial sums $S_n$ as follows.
$$S_1 = a_1 $$
$$S_2 = a_1 + a_2 $$
$$...$$
$$S_n = a_1 + a_2 + ... + a_n$$
Now we define:
$$S = sum_n=1^inftya_n := lim_n to inftyS_n $$
The point of this is that you see that it is good to have a concept of limit (convergance) to define infinte sum. Limit involves, intuitivley speaking, that one things get closer to another; and that requaries notion of distance. If you have a vector space only, you still do not have a way to mesure length of a vector.
So it would be good if you had some way to mesure length of a vector and you can do that by norm. One way to create a norm on your vector space is to induce it with a inner (scalar) product. Then you can define that sequance of vectors $v_n$ converges to some vector $w$ if sequnace of norms $||v_n||$ of vector converges to norm $||w||$. Then you will be able to define infinte sum of vectors because you have notion of convergance.
I kept it brief, but if you do have any question, feel free to ask.
$endgroup$
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
|
show 2 more comments
$begingroup$
In analysis you probably defined infinte sum as follows. Let us say that $a_n$ is some sequance of real numbers. We define partial sums $S_n$ as follows.
$$S_1 = a_1 $$
$$S_2 = a_1 + a_2 $$
$$...$$
$$S_n = a_1 + a_2 + ... + a_n$$
Now we define:
$$S = sum_n=1^inftya_n := lim_n to inftyS_n $$
The point of this is that you see that it is good to have a concept of limit (convergance) to define infinte sum. Limit involves, intuitivley speaking, that one things get closer to another; and that requaries notion of distance. If you have a vector space only, you still do not have a way to mesure length of a vector.
So it would be good if you had some way to mesure length of a vector and you can do that by norm. One way to create a norm on your vector space is to induce it with a inner (scalar) product. Then you can define that sequance of vectors $v_n$ converges to some vector $w$ if sequnace of norms $||v_n||$ of vector converges to norm $||w||$. Then you will be able to define infinte sum of vectors because you have notion of convergance.
I kept it brief, but if you do have any question, feel free to ask.
$endgroup$
In analysis you probably defined infinte sum as follows. Let us say that $a_n$ is some sequance of real numbers. We define partial sums $S_n$ as follows.
$$S_1 = a_1 $$
$$S_2 = a_1 + a_2 $$
$$...$$
$$S_n = a_1 + a_2 + ... + a_n$$
Now we define:
$$S = sum_n=1^inftya_n := lim_n to inftyS_n $$
The point of this is that you see that it is good to have a concept of limit (convergance) to define infinte sum. Limit involves, intuitivley speaking, that one things get closer to another; and that requaries notion of distance. If you have a vector space only, you still do not have a way to mesure length of a vector.
So it would be good if you had some way to mesure length of a vector and you can do that by norm. One way to create a norm on your vector space is to induce it with a inner (scalar) product. Then you can define that sequance of vectors $v_n$ converges to some vector $w$ if sequnace of norms $||v_n||$ of vector converges to norm $||w||$. Then you will be able to define infinte sum of vectors because you have notion of convergance.
I kept it brief, but if you do have any question, feel free to ask.
edited 2 hours ago
answered 2 hours ago
ThomThom
361111
361111
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
|
show 2 more comments
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
It doesn't actually require a notion of distance. You can define infinite sums in topological vector spaces that are not metrizable, like $mathbb R^mathbb R $ in the product topology.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel You can even infinite sums in topological (additive) groups.
$endgroup$
– amsmath
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
@MattSamuel Thanks for comment. I tried to be pedagogical. However from the question asked I estimate that op is not looking for that kind of answer you propose (altrough it is correct). I estimate that he is probably undergrad in math or someone who just encountered vector spaces and mathematical analysis (and is still not able to have general overview), so I kept my answer informative and simple. If you think that op is looking for some other answer feel free to post your answer.
$endgroup$
– Thom
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
Sure, I actually already did.
$endgroup$
– Matt Samuel
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
$begingroup$
@MattSamuel Great.
$endgroup$
– Thom
2 hours ago
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160037%2fhow-can-we-generalize-the-fact-of-finite-dimensional-vector-space-to-an-infinte%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Infinite sums in analysis are defined as limits of the sequence of finite partial sums. In general there is no limit in vector spaces.
$endgroup$
– Jens Schwaiger
2 hours ago
$begingroup$
@Jens Schwaiger please elaborate, I cant understand about how can we define infinite sum by limit of a sequence? And also what are the bounds that we can't do in vector spaces?
$endgroup$
– user639336
2 hours ago
$begingroup$
@user639336 What you are asking is not at all related to the dimension of vector spaces.
$endgroup$
– amsmath
2 hours ago