Is a bound state a stationary state?It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?

Travelling outside the UK without a passport

What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?

Why electric field inside a cavity of a non-conducting sphere not zero?

Are the IPv6 address space and IPv4 address space completely disjoint?

Creature in Shazam mid-credits scene?

Can I sign legal documents with a smiley face?

When were female captains banned from Starfleet?

250 Floor Tower

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Is it possible to have a strip of cold climate in the middle of a planet?

Delivering sarcasm

What should you do when eye contact makes your subordinate uncomfortable?

Which one is correct as adjective “protruding” or “protruded”?

Strong empirical falsification of quantum mechanics based on vacuum energy density

Is a bound state a stationary state?

Create all possible words using a set or letters

How much character growth crosses the line into breaking the character

Redundant comparison & "if" before assignment

Pre-mixing cryogenic fuels and using only one fuel tank

How do you make your own symbol when Detexify fails?

Can someone explain how this makes sense electrically?

What does chmod -u do?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?



Is a bound state a stationary state?


It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?













2












$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago















2












$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago













2












2








2





$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$




In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?







quantum-mechanics hilbert-space terminology definition quantum-states






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Qmechanic

106k121961226




106k121961226










asked 3 hours ago









J-JJ-J

586




586







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago












  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    3 hours ago







2




2




$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago




$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
3 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




Let us now ... discuss the fact that the lowest energy is not zero...




(emphasis added by me), and the following paragraph ends with




The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



    Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




    Let us now ... discuss the fact that the lowest energy is not zero...




    (emphasis added by me), and the following paragraph ends with




    The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




    So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




    Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




    Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



      Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




      Let us now ... discuss the fact that the lowest energy is not zero...




      (emphasis added by me), and the following paragraph ends with




      The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




      So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




      Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




      Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



        Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




        Let us now ... discuss the fact that the lowest energy is not zero...




        (emphasis added by me), and the following paragraph ends with




        The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




        So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




        Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




        Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






        share|cite|improve this answer









        $endgroup$



        I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



        Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




        Let us now ... discuss the fact that the lowest energy is not zero...




        (emphasis added by me), and the following paragraph ends with




        The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




        So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




        Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




        Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        Chiral AnomalyChiral Anomaly

        12.4k21541




        12.4k21541



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

            Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

            A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos