What is the probability that the nth card becomes the top card after shuffling a certain way?Probability of drawing the top two cardsshuffle a deck of cards and cut it into three piles ,what probability that (at least) a court card will turn up on top of one of the piles?What is the probability that the first ace in a deck is the 30th card?The probability that a card is not chosen after a number of drawsProbability of drawing 3 cards in a 16 card deck where one of those 3 cards a duplicate in the deck?Probability of drawing certain card types in an opening handProbability that no five-card hands have each card with the same rank?What is the probability that at least 10 cards go by before the first jack?Probability of picking a card randomly vs always picking the first card?What is the probability that only one of the cards will have the matching suit?

Is this Pascal's Matrix?

Would a primitive species be able to learn English from reading books alone?

Why is participating in the European Parliamentary elections used as a threat?

What is the purpose of using a decision tree?

If the Dominion rule using their Jem'Hadar troops, why is their life expectancy so low?

How do I lift the insulation blower into the attic?

TikZ plot too verbose

"Marked down as someone wanting to sell shares." What does that mean?

Error in master's thesis, I do not know what to do

What should be the ideal length of sentences in a blog post for ease of reading?

What is the period/term used describe Giuseppe Arcimboldo's style of painting?

What is it called when someone votes for an option that's not their first choice?

Asserting that Atheism and Theism are both faith based positions

I keep switching characters, how do I stop?

Why would five hundred and five same as one?

Are hand made posters acceptable in Academia?

Should I warn a new PhD Student?

categorizing a variable turns it from insignificant to significant

Why is implicit conversion not ambiguous for non-primitive types?

Put the phone down / Put down the phone

Why didn't Voldemort know what Grindelwald looked like?

How to preserve electronics (computers, ipads, phones) for hundreds of years?

Output visual diagram of picture

Should I be concerned about student access to a test bank?



What is the probability that the nth card becomes the top card after shuffling a certain way?


Probability of drawing the top two cardsshuffle a deck of cards and cut it into three piles ,what probability that (at least) a court card will turn up on top of one of the piles?What is the probability that the first ace in a deck is the 30th card?The probability that a card is not chosen after a number of drawsProbability of drawing 3 cards in a 16 card deck where one of those 3 cards a duplicate in the deck?Probability of drawing certain card types in an opening handProbability that no five-card hands have each card with the same rank?What is the probability that at least 10 cards go by before the first jack?Probability of picking a card randomly vs always picking the first card?What is the probability that only one of the cards will have the matching suit?













3












$begingroup$


The following problem I can only seem to solve by simulation.



Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.



We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.



Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac17$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.



But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac749$ chance card 1 is on top, a $frac649$ chance that card 2 is on top, etc.



I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    The following problem I can only seem to solve by simulation.



    Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.



    We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.



    Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac17$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.



    But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac749$ chance card 1 is on top, a $frac649$ chance that card 2 is on top, etc.



    I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?










    share|cite|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      The following problem I can only seem to solve by simulation.



      Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.



      We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.



      Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac17$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.



      But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac749$ chance card 1 is on top, a $frac649$ chance that card 2 is on top, etc.



      I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?










      share|cite|improve this question









      $endgroup$




      The following problem I can only seem to solve by simulation.



      Suppose we take a deck and just label the cards from 1-52 in order, with 1 being the card on top. Now suppose we cut the deck at approximately the middle and complete the cut.



      We could assume that there's an equal probability that we cut at each of 3 cards near the exact middle; that is, we either cut at exactly the middle (26 cards in hand), or we cut up to 29 cards or as few as 23 cards, all with equal probability.



      Then we could ask, what's the probability that the $n$th card is now on top? The answer is simply $0$ for most of the cards, and $frac17$ that cards 24, 25, 26, 27, 28, 29, or 30 are on top.



      But suppose we perform this cut twice, what then? I think the simplest answer unfortunately is just to sum up all the ways you can make each outcome and total the probability. For example, obviously card #1 is most likely to return back on top after cutting twice. This can happen if you cut exactly in the middle twice, if you're short one and then long one, if you're short two and then long two, etc. In total, there is a $frac749$ chance card 1 is on top, a $frac649$ chance that card 2 is on top, etc.



      I'm having trouble finding a general pattern here. If you have an odd number of cuts, the most likely cards are somewhere near the middle of the range 1-52; an even number of cuts and the most likely cards are near the edges. But how do I describe this mathematically?







      probability combinatorics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      HiddenBabelHiddenBabel

      1547




      1547




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.



          You can solve this numerically by modelling it as a Markov chain with 52 states (positions).



          Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.



          For example, in Octave/Matlab



          P = zeros(52,52);
          for i=1:52
          for k=23:29
          P(i,mod(i-1+k,52)+1) = 1/7;
          endfor
          endfor

          P(:,1) % probabilities after the first cut
          (P^2)(:,1) % probabilities after the second cut
          (P^3)(:,1) % probabilities after the third cut...


          enter image description here






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
            $endgroup$
            – HiddenBabel
            2 hours ago


















          2












          $begingroup$

          There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^th$ coordinate of $M^nx$.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.



            Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin0,pm1,pm2,pm3$ with equal probability $1/7$, and any other number with probability zero.



            We can perform further cuts.



            Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in $0,pm1,pm2,pm3$ with probability one.



            We have $S_0=0$, then




            • $S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,


            • $S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,


            • $S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,


            • $S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,

            and so on. I would start the repartition of the process $(S_n)$ using this language...






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154874%2fwhat-is-the-probability-that-the-nth-card-becomes-the-top-card-after-shuffling-a%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.



              You can solve this numerically by modelling it as a Markov chain with 52 states (positions).



              Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.



              For example, in Octave/Matlab



              P = zeros(52,52);
              for i=1:52
              for k=23:29
              P(i,mod(i-1+k,52)+1) = 1/7;
              endfor
              endfor

              P(:,1) % probabilities after the first cut
              (P^2)(:,1) % probabilities after the second cut
              (P^3)(:,1) % probabilities after the third cut...


              enter image description here






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
                $endgroup$
                – HiddenBabel
                2 hours ago















              2












              $begingroup$

              For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.



              You can solve this numerically by modelling it as a Markov chain with 52 states (positions).



              Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.



              For example, in Octave/Matlab



              P = zeros(52,52);
              for i=1:52
              for k=23:29
              P(i,mod(i-1+k,52)+1) = 1/7;
              endfor
              endfor

              P(:,1) % probabilities after the first cut
              (P^2)(:,1) % probabilities after the second cut
              (P^3)(:,1) % probabilities after the third cut...


              enter image description here






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
                $endgroup$
                – HiddenBabel
                2 hours ago













              2












              2








              2





              $begingroup$

              For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.



              You can solve this numerically by modelling it as a Markov chain with 52 states (positions).



              Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.



              For example, in Octave/Matlab



              P = zeros(52,52);
              for i=1:52
              for k=23:29
              P(i,mod(i-1+k,52)+1) = 1/7;
              endfor
              endfor

              P(:,1) % probabilities after the first cut
              (P^2)(:,1) % probabilities after the second cut
              (P^3)(:,1) % probabilities after the third cut...


              enter image description here






              share|cite|improve this answer









              $endgroup$



              For the first iterations you get a convolution of discrete uniforms. Afterwards, there is a cyclic overlapping, so I don't think an analytic expression will be very simple.



              You can solve this numerically by modelling it as a Markov chain with 52 states (positions).



              Then, if $P$ is the transition matrix, the desired probabilities (after $n$ cuts) can be found in the first row of $P^n$.



              For example, in Octave/Matlab



              P = zeros(52,52);
              for i=1:52
              for k=23:29
              P(i,mod(i-1+k,52)+1) = 1/7;
              endfor
              endfor

              P(:,1) % probabilities after the first cut
              (P^2)(:,1) % probabilities after the second cut
              (P^3)(:,1) % probabilities after the third cut...


              enter image description here







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 3 hours ago









              leonbloyleonbloy

              41.7k647108




              41.7k647108











              • $begingroup$
                I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
                $endgroup$
                – HiddenBabel
                2 hours ago
















              • $begingroup$
                I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
                $endgroup$
                – HiddenBabel
                2 hours ago















              $begingroup$
              I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
              $endgroup$
              – HiddenBabel
              2 hours ago




              $begingroup$
              I had discounted Markov chains because I thought you needed a 52!x52!-sized matrix! What are the other rows in this case?
              $endgroup$
              – HiddenBabel
              2 hours ago











              2












              $begingroup$

              There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^th$ coordinate of $M^nx$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^th$ coordinate of $M^nx$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^th$ coordinate of $M^nx$.






                  share|cite|improve this answer









                  $endgroup$



                  There are seven possible cuts, each corresponding to a permutation of the cards, so each determining a $52times 52$ permutation matrix. Let $P_1,P_2,dots,P_7$ be these matrices. Let $M=frac17(P_1+dots+P_7)$. Finally, let $x$ be the $52times 1$ column vector whose first coordinate is $1$ and whose other coordinates are zero. Then, the probability that card number $i$ is on top after $n$ cuts is just the $i^th$ coordinate of $M^nx$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  Mike EarnestMike Earnest

                  25.2k22151




                  25.2k22151





















                      1












                      $begingroup$

                      One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.



                      Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin0,pm1,pm2,pm3$ with equal probability $1/7$, and any other number with probability zero.



                      We can perform further cuts.



                      Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in $0,pm1,pm2,pm3$ with probability one.



                      We have $S_0=0$, then




                      • $S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,


                      • $S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,


                      • $S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,


                      • $S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,

                      and so on. I would start the repartition of the process $(S_n)$ using this language...






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.



                        Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin0,pm1,pm2,pm3$ with equal probability $1/7$, and any other number with probability zero.



                        We can perform further cuts.



                        Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in $0,pm1,pm2,pm3$ with probability one.



                        We have $S_0=0$, then




                        • $S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,


                        • $S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,


                        • $S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,


                        • $S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,

                        and so on. I would start the repartition of the process $(S_n)$ using this language...






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.



                          Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin0,pm1,pm2,pm3$ with equal probability $1/7$, and any other number with probability zero.



                          We can perform further cuts.



                          Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in $0,pm1,pm2,pm3$ with probability one.



                          We have $S_0=0$, then




                          • $S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,


                          • $S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,


                          • $S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,


                          • $S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,

                          and so on. I would start the repartition of the process $(S_n)$ using this language...






                          share|cite|improve this answer









                          $endgroup$



                          One possibility is to put algebraic structure on the cards. They may be the elements $0,1,2,3,dots, 51$ of the abelian group $Bbb Z/52$ of the integers taken modulo $52$. Then let us start we $S_0=0$.



                          Completing a cut means adding to $S_0$ a random variable $X_1$ which is taking the values $26+kinBbb Z/52$ for $kin0,pm1,pm2,pm3$ with equal probability $1/7$, and any other number with probability zero.



                          We can perform further cuts.



                          Then we add further random variables $X_2,X_3,dots$ which have the same "shape" (repartition) as $X_1$. It is natural to write $X_k=26+Z_k$, so $Z_k$ takes values in $0,pm1,pm2,pm3$ with probability one.



                          We have $S_0=0$, then




                          • $S_1=S_0+X_1=26+Z_1$ is "near" the middle $26$,


                          • $S_2=S_1+X_2=Z_1+Z_2$ is "near" the start $0$,


                          • $S_3=S_2+X_3=26+Z_1+Z_2+Z_3$ is "near" the middle $26$,


                          • $S_4=S_3+X_4=Z_1+Z_2+Z_3+Z_4$ is "near" the start $0$,

                          and so on. I would start the repartition of the process $(S_n)$ using this language...







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 5 hours ago









                          dan_fuleadan_fulea

                          6,7781312




                          6,7781312



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154874%2fwhat-is-the-probability-that-the-nth-card-becomes-the-top-card-after-shuffling-a%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How does Billy Russo acquire his 'Jigsaw' mask? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why does Bane wear the mask?Why does Kylo Ren wear a mask?Why did Captain America remove his mask while fighting Batroc the Leaper?How did the OA acquire her wisdom?Is Billy Breckenridge gay?How does Adrian Toomes hide his earnings from the IRS?What is the state of affairs on Nootka Sound by the end of season 1?How did Tia Dalma acquire Captain Barbossa's body?How is one “Deemed Worthy”, to acquire the Greatsword “Dawn”?How did Karen acquire the handgun?

                              Личност Атрибути на личността | Литература и източници | НавигацияРаждането на личносттаредактиратередактирате

                              A sequel to Domino's tragic life Why Christmas is for Friends Cold comfort at Charles' padSad farewell for Lady JanePS Most watched News videos